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It is a capital mistake to theorize before one has data.
Sherlock Holmes

We are surrounded by data, but starved for insights.

Jay Baer

This book is based on lecture notes for the 2024 ASU research-oriented
course on Reinforcement Learning (RL) that I have offered in each of the
last six years, as the field was rapidly evolving.t The purpose of the book
is to give an overview of the RL methodology, with a particular focus on
problems of optimal and suboptimal control, as well as discrete optimiza-
tion. More broadly, the book aims to provide a framework for structured
thinking about RL and its connections to decision and control, which is
grounded in mathematics, but is not dominated by it.

Generally, RL can be viewed as the art and science of sequential
decision making for large and difficult problems, often in the presence of
imprecisely known and changing environment conditions. Dynamic Pro-
gramming (DP), a well-established optimization methodology, forms the

1 The 1st edition of the book appeared in 2023. The 2nd edition includes
material that was introduced in the 2024 offering of the ASU course.

I The term “reinforcement learning” originated from the concept of “rein-
forcement” in behavioral psychology. Its meaning has evolved over time, starting
in the 1980s.



theoretical foundation of RL. This is unlikely to change in the future, de-
spite the rapid pace of technological innovation. In fact, there are strong
connections between sequential decision making and the new wave of tech-
nological change, generative artificial intelligence, transformers, GPT ap-
plications, and natural language processing, as we will aim to show in this
book.

In DP there are two principal objects to compute: the optimal value
function, which provides the optimal cost that can be attained starting
from any given initial state, and the optimal policy, which provides the
optimal decision to apply at any given state and time. Unfortunately, the
exact application of DP runs into formidable computational challenges,
commonly known as the curse of dimensionality. To address these, RL aims
to approximate the optimal value function and policy, by using manageable
off-line and/or on-line computation, which often involves neural networks
(hence the alternative name Neuro-Dynamic Programming [BeT96]).

Thus there are two major methodological approaches in RL: approz-
imation in value space, where we approximate in some way the optimal
value function, and approximation in policy space, where we construct a
suboptimal policy by optimizing over a restricted set of policies. These two
approaches can sometimes be combined to exploit the strengths of both.
Generally, approximation in value space aligns more closely to the central
DP ideas of value and policy iteration, while approximation in policy space
often relies on gradient-like descent, a more broadly applicable optimization
methodology.

The book focuses primarily on approximation in value space, with
limited coverage of approximation in policy space in Chapter 3. However,
it is structured to allow instructors to go into approximation in policy space
in greater detail, using any of a number of available sources.

Our Conceptual Framework

An important part of our line of development is a new conceptual frame-
work, which aims to bridge the gaps between the artificial intelligence,
control theory, and operations research views of our subject. This frame-
work, the focus of the author’s recent monograph “Lessons from AlphaZero
.7, [Ber22a], centers on approximate forms of DP that are inspired by
some of the major successes of RL involving games. Primary examples are
the recent (2017) AlphaZero program (which plays chess), and the sim-
ilarly structured and earlier (1990s) TD-Gammon program (which plays
backgammon).

Our framework is couched on two general algorithms that are de-
signed largely independently of each other and operate in synergy through
the powerful mechanism of Newton’s method, applied to the fundamental
Bellman equation of DP. We call these the off-line training and the on-line
play algorithms. In the AlphaZero and TD-Gammon game contexts, the



off-line training algorithm is the method used to teach the program how to
evaluate positions and to generate good moves at any given position, while
the on-line play algorithm is the method used to play in real time against
human or computer opponents.

Our synergistic view of off-line training and on-line play is motivated
by some striking empirical observations. In particular, both AlphaZero and
TD-Gammon were trained off-line extensively using neural networks and an
approximate version of the fundamental DP algorithm of policy iteration.
Yet the AlphaZero player that was obtained off-line is not used directly
during on-line play (it is too inaccurate due to approximation errors that
are inherent in off-line neural network training). Instead, a separate on-line
player is used to select moves, based on multistep lookahead minimization
and a terminal position evaluator that was trained using experience with
the off-line player. The on-line player performs a form of policy improve-
ment, which is not degraded by neural network approximations. As a result,
it greatly improves the performance of the off-line player.

Similarly, TD-Gammon performs on-line a policy improvement step
using one-step or two-step lookahead minimization, which is not degraded
by neural network approximations. To this end, it uses an off-line neural
network-trained terminal position evaluator, and importantly it also ex-
tends its on-line lookahead by rollout (simulation with the one-step looka-
head player that is based on the position evaluator). Thus in summary:

(a) The on-line player of AlphaZero plays much better than its extensively
trained off-line player. This is due to the beneficial effect of exact
policy improvement with long lookahead minimization, which corrects
for the inevitable imperfections of the neural network-trained off-line
player, and position evaluator/terminal cost approximation.

(b) The TD-Gammon player that uses long rollout plays much better
than TD-Gammon without rollout. This is due to the beneficial effect
of the rollout, which serves as a supplement and substitute for long
lookahead minimization.

An important lesson from AlphaZero and TD-Gammon is that the
performance of an off-line trained policy can be greatly improved by on-line
approximation in value space, with long lookahead (involving minimization
or rollout with the off-line policy, or both), and terminal cost approximation
that is obtained off-line. This performance enhancement is often dramatic
and is due to a simple fact, which is couched on algorithmic mathematics
and is a focal point of our course: approzimation in value space with one-
step lookahead minimization amounts to a step of Newton’s method for
solving Bellman’s equation, while the starting point for the Newton step is
based on the results of off-line training, and may be enhanced by longer
lookahead minimization and on-line rollout. Indeed the major determinant
of the quality of the on-line policy is the Newton step that is performed



on-line, while off-line training plays a secondary role by comparison.

An additional benefit of policy improvement by approximation in
value space, not observed in the context of games (which have stable rules
and environment), is that it works well with changing problem parameters
and on-line replanning, similar to the methodology of indirect adaptive con-
trol. In particular, the Bellman equation is perturbed due to the parameter
changes, but approximation in value space still operates as a Newton step.
An essential requirement here is that a system model is estimated on-line
through some identification method, and is used during the one-step or
multistep lookahead minimization process. This may be a mathematical
model represented by equations and probability distributions, or a com-
puter model that involves simulation and/or neural network software.

In this book, we will describe the basic RL methodologies, and we
will aim to explain (often with visualization) their effectiveness (or lack
thereof) through the lens of the off-line and on-line synergy. In the process,
we will bring out the strong connections between the artificial intelligence
view of RL, the control theory view of sequential decision making, and
the operations research view of discrete optimization. Moreover, we will
describe a broad variety of algorithms that can be used for on-line play.

In particular, we will aim to show that the methodology of approxi-
mation in value space and rollout applies very broadly to deterministic and
stochastic optimal control problems, involving both discrete and continuous
search spaces, as well as finite and infinite horizon. We will also show that
our conceptual framework can be effectively integrated with other impor-
tant methodologies such as multiagent systems and decentralized control,
discrete and Bayesian optimization, two-person antagonistic games, and
heuristic algorithms for discrete optimization.

Reinforcement Learning and Model Predictive Control

Significantly, the synergy between off-line training and on-line play also
underlies Model Predictive Control (MPC), a major control system design
methodology that has been extensively developed since the 1980s.t One
of the major themes of this book is that RL, as practiced by the artificial
intelligence community, and MPC, as practiced by the decision and con-
trol community, can be viewed as essentially identical methodologies at a
mathematical and conceptual level.

The similarity of the two fields will become evident from the dis-
cussion of Section 1.1. In particular, both fields are founded on DP, and

T “Model predictive control” is an abbreviation for the far more descriptive
term “model-based predictive control.” Here, the word “model” refers to either
a mathematical model or a computer software model of a discrete-time dynamic
system that evolves under the influence of control. The term “predictive” gener-
ally refers to taking into account the system’s future, while applying control in
the present.



both involve an on-line search algorithm and an off-line training process.
Their differences are largely a matter of emphasis: RL has its roots on
theories of game playing and learning, and places far more emphasis in
off-line training, and discrete state and action spaces, while MPC has its
roots in predictive on-line optimization and places far more emphasis in
on-line play, and continuous state and control spaces. Other differences,
which can also be traced to the respective origins of the two fields, are that
RL includes a focus on approximation in policy space (which has been of
peripheral interest in MPC), while MPC includes a strong focus on closed-
loop system stability issues (which are hardly ever discussed in the context
of RL).

Supporting Literature

In this book, we will deemphasize mathematical proofs, and focus instead

on visualizations and intuitive (but still rigorous) explanations. However,

there is considerable related analysis, which supports our narrative, and

can be found within a broad range of sources, which we describe next.
The author’s approximate DP/RL books

[1] Bertsekas, D. P.; 2019. Reinforcement Learning and Optimal Control,
Athena Scientific, Belmont, MA.

[2] Bertsekas, D. P., 2020. Rollout, Policy Iteration, and Distributed Re-
inforcement Learning, Athena Scientific, Belmont, MA.

provide a far more detailed discussion of MPC, adaptive control, discrete
optimization, and distributed computation topics, than the present book.
Moreover, some other popular methods, such as temporal difference algo-
rithms and Q-learning, are discussed in the books [1] and [2], but not in
the present book.

The author’s two-volume DP book

[3] Bertsekas, D. P., 2017. Dynamic Programming and Optimal Control,
Vol. 1, 4th Edition, Athena Scientific, Belmont, MA.

[4] Bertsekas, D. P., 2012. Dynamic Programming and Optimal Control,
Vol. 11, 4th Edition, Athena Scientific, Belmont, MA.

is a major source on the modeling and mathematical aspects of finite and
infinite horizon DP. Modeling aspects and finite horizon problems are the
principal focus of [3], while the mathematical aspects of infinite horizon
problems are the principal focus of [4]. Both books [3] and [4] provide
substantial accounts of approximate DP/RL methods. Thus these books
are the best entry points for a research-oriented reader that wishes to go
into DP and its connections to RL more deeply.

Two of the author’s recent research monographs are also highly rele-
vant to our narrative:



[5] Bertsekas, D. P., 2022. Abstract Dynamic Programming, 3rd Ed.,
Athena Scientific, Belmont, MA (can be downloaded from the au-
thor’s website).

This monograph focuses on the analytical aspects of abstract DP on which
the Newton-based methodology is couched, and may serve as a mathe-
matical supplement to the present book. It also provides some supportive
mathematical foundation for the more visually oriented monograph

[6] Bertsekas, D. P., 2022. Lessons from AlphaZero for Optimal, Model
Predictive, and Adaptive Control, Athena Scientific, Belmont, MA
(can be downloaded from the author’s website).

This monograph relies on intuitive visualization to convey the main ideas of
our off-line training/on-line play/Newton’s method conceptual framework
for approximation in value space. It also focuses on model predictive and
adaptive control, and associated issues of stability. Like our Section 1.5, it
is visually oriented, but goes into greater detail into various special cases,
including pathological exceptions.

All of the above books are available as ebooks as well as in print
form; see the Athena Scientific website. A lot of the material in this book
is adapted from these books. However, the books themselves collectively
provide a far more detailed and mathematically rigorous presentation.

An extensive overview of the connections and applications of the con-
ceptual framework of this book with model predictive and adaptive control
is given in the paper

[7] Bertsekas, D. P., 2024. “Model Predictive Control, and Reinforcement
Learning: A Unified Framework Based on Dynamic Programming,”
published in Proc. IFAC NMPC (can be downloaded from the au-
thor’s website; a videolecture is available on-line).

Together with Chapter 1 of this book, it can be used as a starting point
for a course in modern control system design.

The present book can also be fruitfully supplemented by the exten-
sive textbook and research monograph literature on RL. This literature is
summarized in Section 1.8, and includes several accounts of RL that are
based on alternative viewpoints of artificial intelligence, control theory, and
operations research.

Structure of the Book - Course Adaptations

A key structural feature of this book is its modular organization, with
a view towards flexibility, so it can be easily modified to accommodate
changes in course content. In particular, the book is divided in two parts:

(1) A foundational platform, which consists of Chapter 1. It provides
a selective overview of the approximate DP/RL landscape, and a



starting point for a more detailed in-class development of other RL
topics, whose choice can be at the instructor’s discretion.

(2) An in-depth coverage, which consists of Chapters 2 and 3. It offers
a deeper focus into specific methodologies. In particular, Chapter 2
describes primarily deterministic and stochastic rollout techniques,
as well as some related approximation in value methods. Chapter 3
addresses the use of neural networks and other approximation archi-
tectures for off-line training.

This modular structure allows for customization based on a course’s focus.
For example, instructors can use the foundational platform of Chapter 1 to
build either more mathematically-oriented or less formal courses, depending
on the needs of their class.

Let us also mention that the book contains more material than can be
reasonably covered in class in one semester. This provides some flexibility
to an instructor regarding the choice of material to present.

Videolectures and Slides

The present book and my RL books above, were developed while teaching
several versions of my course at ASU. Videolectures and slides from this
course, as well as links to overview videolectures by the author are available
from my website

http://web.mit.edu/dimitrib/www/RLbook.html

and provide a good supplement and companion resource to this book.

Thanks and Appreciation

The hospitable and stimulating environment at ASU contributed much to
shaping my course during the period 2019-2024. I am thankful to several
colleagues and students, and to my teaching assistants, Sushmita Bhat-
tacharya, Sahil Badyal, and Jamison Weber, for their comments and sug-
gestions. Very special thanks are due to Yuchao Li for many valuable
interactions, collaborative research, and proofreading support.



FExact and Approximate Dynamac

Programming

Contents
1.1. AlphaZero, Off-Line Training, and On-Line Play . . . . p.4
1.2. Deterministic Dynamic Programming . . p.- 10
1.2.1. Finite Horizon Problem Formulation . . p- 10
1.2.2. The Dynamic Programming Algorithm . . p- 14
1.2.3. Approximation in Value Space and Rollout . p. 22
1.3. Stochastic Exact and Approximate Dynamic Programming p. 28
1.3.1. Finite Horizon Problems . p. 28
1.3.2. Approximation in Value Space for Stochastlc DP . p-34
1.3.3. Approximation in Policy Space . p- 38
1.3.4. Off-Line Training of Cost Function and Pohcy ..
Approximations . . . . p. 41
1.4. Infinite Horizon Problems - An Overv1ew . p-42
1.4.1. Infinite Horizon Methodology . . . p.-45
1.4.2. Approximation in Value Space - Infinite Horlzon p- 49
1.4.3. Understanding Approximation in Value Space . . p- 55
1.5. Newton’s Method - Linear Quadratic Problems . . p- 56
1.5.1. Visualizing Approximation in Value Space - A
Region of Stability . p. 62
1.5.2. Rollout and Policy Iteration . p. 70
1.5.3. Local and Global Error Bounds for Appr0x1mat10n in
Value Space . . . . . . . . . ... ... ..p T4




Exact and Approximate Dynamic Programming

1.6. Examples, Reformulations, and Simplifications

1.6.1.
1.6.2.
1.6.3.
1.6.4.
1.6.5.

1.6.6.
1.6.7.
1.6.8.

1.6.9.

A Few Words About Modeling

Problems with a Termination State

General Discrete Optimization Problems .
General Finite to Infinite Horizon Reformulation
State Augmentation, Time Delays, Forecasts, and
Uncontrollable State Components ..
Partial State Information and Belief States .
Multiagent Problems and Multiagent Rollout
Problems with Unknown Parameters - Adaptive
Control e

Model Predictive Control .

1.7. Reinforcement Learning and Decision/Control

1.7.1.
1.7.2.
1.7.3.

Differences in Terminology

Differences in Notation . Ce e e
A Few Words about Machine Learning and
Mathematical Optimization

1.8. Notes, Sources, and Exercises .

o

SRR

XK

Chap.

79
79
83
85
89

p- 91
p. 102
107
117
128
128
130
131
. 136

kel




Sec. 1.0 3

This chapter has multiple purposes:

(a)

To provide an overview of the exact dynamic programming (DP) meth-
odology, with a focus on suboptimal solution methods. We will first
discuss finite horizon problems, which involve a finite sequence of suc-
cessive decisions, and are thus conceptually and analytically simpler.
We will consider separately deterministic and stochastic finite hori-
zon problems (Sections 1.2 and 1.3, respectively). The reason is that
deterministic problems are simpler and have some favorable charac-
teristics, which allow the application of a broader variety of methods.
Significantly they include challenging discrete and combinatorial op-
timization problems, which can be fruitfully addressed with some of
the reinforcement learning (RL) methods that are the main subject
of the book. We will also discuss somewhat briefly the more intricate
infinite horizon methodology (Section 1.4), and refer to the author’s
DP textbooks [Berl2], [Berl7a], the RL books [Ber19a], [Ber20al,
and the neuro-dynamic programming monograph [BeT96] for a fuller
presentation.

To summarize the principal RL methodologies, with primary emphasis
on approximation in value space. This is the approximate DP-based
architecture that underlies the AlphaZero, AlphaGo, TD-Gammon
and other related programs, as well as the Model Predictive Control
(MPC) methodology, one of the principal control system design meth-
ods. We will also argue later (Chapter 2) that approximation in value
space provides the entry point for the use of RL methods for solving
discrete optimization and integer programming problems.

To explain the major principles of approximation in value space, and
its division into the off-line training and the on-line play algorithms.
A key idea here is the connection of these two algorithms through the
algorithmic methodology of Newton’s method for solving the prob-
lem’s Bellman equation. This viewpoint, recently developed in the
author’s “Rollout and Policy Iteration ...” book [Ber20a] and the vi-
sually oriented “Lessons from AlphaZero ...” monograph [Ber22al,
underlies the entire course and is discussed for the simple, intuitive,
and important class of linear quadratic problems in Section 1.5.

To overview the range of problem types where our RL methods apply,
and to explain some of their major algorithmic ideas (Section 1.6).
Included here are partial state observation problems (POMDP), mul-
tiagent problems, and problems with unknown model parameters,
which can be addressed with adaptive control methods.

This chapter will also discuss selectively some major algorithms in

approximate DP and RL, including rollout and policy iteration. A broader
discussion of DP/RL may be found in the RL books [Ber19a], [Ber20a], the
DP textbooks [Ber12], [Berl7a], the neuro-dynamic programming mono-
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graph [BeT96], alongside other textbooks referenced in the final section.

The book reflects the author’s decision/control and operations re-
search orientation, which has in turn guided the choices of terminology,
notation, and mathematical style throughout. On the other hand, RL
methods have been developed within the artificial intelligence community,
as well as the decision/control and operations research communities. De-
spite similarities in the mathematical structures of the problems that these
communities address, there are notable differences in terminology, nota-
tion, and culture, which can be confusing to researchers entering the field.
We have thus provided in Section 1.7 a glossary and an orientation to assist
the reader in navigating the full range of the DP/RL literature.

ALPHAZERO, OFF-LINE TRAINING, AND ON-LINE PLAY

One of the most exciting recent success stories in RL is the development
of the AlphaGo and AlphaZero programs by DeepMind Inc; see [SHM16],
[SHS17], [SSS17]. AlphaZero plays Chess, Go, and other games, and is
an improvement in terms of performance and generality over AlphaGo,
which plays the game of Go only. Both programs play better than all
competitor computer programs available in 2022, and much better than
all humans. These programs are remarkable in several other ways. In
particular, they have learned how to play without human instruction, just
data generated by playing against themselves. Moreover, they learned how
to play very quickly. In fact, AlphaZero learned how to play chess better
than all humans and computer programs within hours (with the help of
awesome parallel computation power, it must be said).

Perhaps the most impressive aspect of AlphaZero/chess is that its
play is not just better, but it is also very different than human play in
terms of long term strategic vision. Remarkably, AlphaZero has discovered
new ways to play a game that has been studied intensively by humans for
hundreds of years. Still, for all of its impressive success and brilliant imple-
mentation, AlphaZero is couched on well established theory and methodol-
ogy, which is the subject of the present book, and is portable to far broader
realms of engineering, economics, and other fields. This is the methodology
of DP, policy iteration, limited lookahead, rollout, and approximation in
value space.

It is also worth noting that the principles of the AlphaZero design
have much in common with the work of Tesauro [Tes94], [Tes95], [TeG96]
on computer backgammon. Tesauro’s programs stimulated much interest
in RL in the middle 1990s, and exhibit similarly different and better play
than human backgammon players. A related impressive program for the
(one-player) game of Tetris, also based on the method of policy iteration,
is described by Scherrer et al. [SGG15], who mention several related an-
tecedent works. For a better understanding of the connections of AlphaZero
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and AlphaGo Zero with Tesauro’s programs and the concepts developed
here, the “Methods” section of the paper [SSS17] is recommended.

To understand the overall structure of AlphaZero and its connection
to our DP/RL methodology, it is useful to divide its design into two parts:
off-line training, which is an algorithm that learns how to evaluate chess
positions, and how to steer itself towards good positions with a default/base
chess player, and on-line play, which is an algorithm that generates good
moves in real time against a human or computer opponent, using the train-
ing it went through off-line. We will next briefly describe these algorithms,
and relate them to DP concepts and principles.

Off-Line Training and Policy Iteration

This is the part of the program that learns how to play through off-line
self-training, and is illustrated in Fig. 1.1.1. The algorithm generates
a sequence of chess players and position evaluators. A chess player as-
signs “probabilities” to all legal moves in a given position, representing the
likelihood of each move being chosen. A position evaluator assigns a nu-
merical score to a given position, predicting the player’s chances of winning
from that position. The chess player and the position evaluator are rep-
resented by two neural networks, a policy network and a value network,
which accept a chess position and generate a set of move probabilities and
a position evaluation, respectively.}

In more traditional DP terminology, a position is the state of the
game, a position evaluator is a cost function that gives (an estimate of) the
optimal cost-to-go at a given state, and the chess player is a randomized
policy for selecting actions/controls at a given state.f

The overall training algorithm is a form of policy iteration, a classical
DP algorithm that will be of primary interest to us in this book. Start-
ing from a given player, it repeatedly generates (approximately) improved
players, and settles on a final player that is judged empirically to be “best”

T Here the neural networks play the role of function approzimators; see Chap-
ter 3. By viewing a player as a function that assigns move probabilities to a
position, and a position evaluator as a function that assigns a numerical score to
a position, the policy and value networks provide approximations to these func-
tions based on training with data (training algorithms for neural networks and
other approximation architectures are also discussed in the RL books [Ber19al,
[Ber20a], and the neuro-dynamic programming book [BeT96]).

1 One more complication is that chess and Go are two-player games, while
most of our development will involve single-player optimization. However, DP
theory extends to two-player games, although we will not focus on this extension.
Alternately, we can consider training a game program to play against a known
fixed opponent; this is a one-player setting, which is discussed further in Section
2.12.
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Figure 1.1.1 Illustration of the AlphaZero training algorithm. It generates a
sequence of position evaluators and chess players. The position evaluator and the
chess player are represented by two neural networks, a value network and a policy
network, which accept a chess position and generate a position evaluation and a
set of move probabilities, respectively.

out of all the players generated.t Policy iteration may be separated con-
ceptually in two stages (see Fig. 1.1.1).

(a) Policy evaluation: Given the current player and a chess position, the
outcome of a game played out from the position provides a single
data point. Many data points are collected and used to train a value
network, which then serves as the position evaluator for the player.

(b) Policy improvement: Given the current player and its position eval-
uator, trial move sequences are selected and evaluated for the rest of
the game starting from many positions. An improved player is then
generated by adjusting the move probabilities of the current player
towards the trial moves that have yielded the best results. In Alp-
haZero this is done with a complicated algorithm called Monte Carlo
Tree Search. However, policy improvement can also be done more
simply. For example, all possible move sequences from a given posi-
tion could be tried, extending forward a few moves, with the terminal

T Quoting from the paper [SSS17]: “The AlphaGo Zero selfplay algorithm
can similarly be understood as an approximate policy iteration scheme in which
MCTS is used for both policy improvement and policy evaluation. Policy im-
provement starts with a neural network policy, executes an MCTS based on that
policy’s recommendations, and then projects the (much stronger) search policy
back into the function space of the neural network. Policy evaluation is applied
to the (much stronger) search policy: the outcomes of selfplay games are also
projected back into the function space of the neural network. These projection
steps are achieved by training the neural network parameters to match the search
probabilities and selfplay game outcome respectively.” Note, however, that a two-
person game player, trained through selfplay, may fail against a particular human
or computer player that can exploit training vulnerabilities. This is a theoretical
but rare possibility; see our discussion in Section 2.12.
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position evaluated by the player’s position evaluator. The move eval-
uations obtained in this way are used to nudge the move probabilities
of the current player towards more successful moves, thereby obtain-
ing data that is used to train a policy network that represents the
new player.

Tesauro’s TD-Gammon algorithm [Tes94] is similarly based on ap-
proximate policy iteration, but uses a different methodology for approxi-
mate policy evaluation, based on the TD(A) algorithm. Unlike AlphaZero,
TD-Gammon does not employ a policy network or MCTS. Instead, it relies
solely on a value network, to replicate the functionality of a policy network
by generating moves on-line via a one-step or two-step lookahead mini-
mization. For a detailed description, see Section 8.6 of the neuro-dynamic
programming book [BeT96].

On-Line Play and Approximation in Value Space - Rollout

Suppose that a “final” player has been obtained through the AlphaZero
off-line training process just described. This player could, in principle,
play chess against any human or computer opponent by generating move
probabilities using its off-line-trained policy network. At any position, the
player would simply select the move with the highest probability from the
policy network. While this approach would allow the player to make de-
cisions quickly, it would not be strong enough to defeat highly skilled hu-
man opponents. AlphaZero’s extraordinary strength arises only when the
off-line-trained player and position evaluator are embedded into another
algorithm, which we refer to as the on-line player (see Fig. 1.1.2). At a
given position, it generates a lookahead tree of all possible multiple move
and countermove sequences, up to a given depth. It then evaluates the
effect of the remaining moves by using the position evaluator of the off-line
obtained value network.

The architecture of the final version of Tesauro’s TD-Gammon pro-
gram [TeG96] is similar to the one of AlphaZero, and uses an off-line neu-
ral network-trained terminal position evaluator; see Fig. 1.1.3. However, it
also includes a middle portion, called “truncated rollout,” which involves
running a player for a few moves, before using the position evaluator. In
effect, rollout can be viewed as an economical way to extend the length
of the lookahead. In the published version of AlphaZero/chess [SHS17],
there is also a rollout portion, but it is is rather rudimentary; the first
portion (multistep lookahead) is quite long and efficiently implemented, so
that a sophisticated rollout portion is not essential. Rollout plays a sig-
nificant role in AlphaGo [SHM16], and is critically important in Tesauro’s
backgammon program, where long multistep lookahead is infeasible due to
the rapid expansion of the lookahead tree.

Architectures that are similar to the ones of AlphaZero and TD-
Gammon will be generically referred to as approximation in value space
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Figure 1.1.2 Illustration of the on-line player of AlphaZero and many other
computer chess programs. At a given position, it generates a lookahead tree
of multiple moves up to some depth, and evaluates the effect of the remaining
moves by using the position evaluator of the off-line player. There are many
implementation details that we do not discuss here; for example the lookahead
is selective, because some lookahead paths are pruned, by using a form of Monte
Carlo tree search. Note that the off-line-trained neural network of AlphaZero
produces both a position evaluator and a playing policy. However, the neural
network-trained policy is not used directly for on-line play.

in this book. Architectures of this type are also known as approximate dy-
namic programming, or neuro-dynamic programming, and will be central
for our purposes.t

Among other settings, approximation in value space is used in control
system design, particularly in model predictive control (MPC), which is
briefly described in Section 6.1.9. There, the number of steps in lookahead

1 The names “approximate dynamic programming” and “neuro-dynamic pro-
gramming” are often used as synonyms to RL. However, RL is generally thought
to also subsume the methodology of approximation in policy space, which in-
volves search for optimal parameters within a parametrized set of policies. The
search is done with methods that are largely unrelated to DP, such as for example
stochastic gradient or random search methods. Approximation in policy space
may be used off-line to design a policy that can be used for on-line rollout. It
will be discussed rather briefly in this book (see Sections 3.4 and 3.5). A more
detailed discussion, consistent with the terminology used here, can be found in
Chapter 5 of the RL book [Ber19a).
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Figure 1.1.3 Illustration of the architecture of TD-Gammon with truncated
rollout [TeG96]. It uses a relatively short lookahead minimization followed by
rollout and terminal position evaluation (i.e., game simulation with the one-step
lookahead player; the game is truncated after a number of moves, with a position
evaluation at the end). Note that backgammon involves stochastic uncertainty,
and its state is the pair of current board position and dice roll. For this reason,
rollout requires Monte-Carlo simulation, and is quite time-consuming. As a result,
backgammon programs that play under restrictive time controls, use limited or
highly truncated forms of rollout.

minimization is called the control interval, while the total number of steps
in lookahead minimization and truncated rollout is called the prediction
interval; see e.g., Magni et al. [MDMO1].f The benefit of truncated rollout
in providing an economical substitute for longer lookahead minimization is
well known in MPC.

It should be noted that the preceding description of AlphaZero and
related approximation in value space architectures is somewhat simplified.
We will be discussing refinements and details as the book progresses. How-
ever, DP ideas with cost function approximations, similar to the on-line
player illustrated in Fig. 1.1.2, will be central to the book. Moreover, the
algorithmic division between off-line training and on-line policy implemen-
tation will be conceptually very important for our discussions.

We finally note that in approximation in value space the off-line train-
ing and the on-line play algorithms can often be decoupled and indepen-
dently designed. For example the off-line training portion may be simple,

1 The Matlab toolbox for MPC design explicitly allows the user to set these
two intervals.
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Figure 1.2.1 Illustration of a deterministic N-stage optimal control problem.
Starting from state xj, the next state under control uy is generated nonrandomly,
according to

Tr4+1 = fk(xkvuk)v

and a stage cost gi(xk,uk) is incurred.

such as using a known policy for rollout without truncation, or without
terminal cost approximation. Conversely, a sophisticated process may be
used for off-line training of a terminal cost function approximation, which
is used immediately following one-step or multistep lookahead in a value
space approximation scheme.

DETERMINISTIC DYNAMIC PROGRAMMING

In all DP problems, the central object is a discrete-time dynamic system
that generates a sequence of states under the influence of actions or controls.
The system may evolve deterministically or randomly (under the additional
influence of a random disturbance).

1.2.1 Finite Horizon Problem Formulation

In finite horizon problems the system evolves over a finite number NV of time
steps (also called stages). The state and control at time k of the system will
be generally denoted by xy and wg, respectively. In deterministic systems,
ZTr+1 is generated nonrandomly, i.e., it is determined solely by z and uy;
see Fig. 1.2.1. Thus, a deterministic DP problem involves a system of the
form

:vk+1=fk(:vk,uk), kZO,l,...,N—l, (1.1)

where
k is the time index,
x) is the state of the system, an element of some space,

uy is the control or decision variable, to be selected at time k& from some
given set Ug(z) that depends on xy,

fx is a function of (zy,u) that describes the mechanism by which the
state is updated from time k to time k + 1,
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N is the horizon, i.e., the number of times control is applied.

In the case of a finite number of states, the system function fr may be
represented by a table that gives the next state x41 for each possible value
of the pair (zy,u). Otherwise a mathematical expression or a computer
implementation is necessary to represent f.

The set of all possible zy, is called the state space at time k. It can be
any set and may depend on k. Similarly, the set of all possible uy, is called
the control space at time k. Again it can be any set and may depend on k.
Similarly the system function f; can be arbitrary and may depend on k.}

The problem also involves a cost function that is additive in the sense
that the cost incurred at time k, denoted by gi(zk,ur), accumulates over
time. Formally, gx is a function of (xy,ux) that takes scalar values, and
may depend on k. For a given initial state xo, the total cost of a control
sequence {ug,...,un—_1} is

N-1

J(xo;uo,...,uNfl)ng(xN)—i- ng(:vk,uk), (1.2)
k=0

where gn(2zn) is a terminal cost incurred at the end of the process. This
is a well-defined scalar, since the control sequence {uo, ..., un_1} together
with xo determines exactly the state sequence {z1,...,xn} via the system
equation (1.1). We want to minimize the cost (1.2) over all sequences
{uo,...,un—1} that satisfy the control constraints, thereby obtaining the
optimal value as a function of xg:

J(xo) = min  J(wo;uo,-..,unN—1) (1.3)
up €U (xp,)
k=0,....N—1

1 This generality is one of the great strengths of the DP methodology and
guides the exposition style of this book, and the author’s other DP works.
By allowing general state and control spaces (discrete, continuous, or mixtures
thereof), and a k-dependent choice of these spaces, we can focus attention on
the truly essential algorithmic aspects of the DP approach, exclude extraneous
assumptions and constraints from our model, and avoid duplication of analysis.

The generality of our DP model is also partly responsible for our choice
of notation. In the artificial intelligence and operations research communities,
finite state models, often referred to as Markovian Decision Problems (MDP),
are common and use a transition probability notation (see Section 1.7.2). Unfor-
tunately, this notation is not well suited for deterministic models, and also for
continuous spaces models, both of which are important for the purposes of this
book. For the latter models, it involves transition probability distributions over
continuous spaces, and leads to mathematics that are far more complex as well
as less intuitive than those based on the use of the system function (1.1).

I Here and later we write “min” (rather than “inf”) even if we are not sure
that the minimum is attained; similarly we write “max” (rather than “sup”) even
if we are not sure that the maximum is attained.
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Figure 1.2.2 Transition graph for a deterministic finite-state system. Nodes
correspond to states xj. Arcs correspond to state-control pairs (mk,uk) An arc
(zk,uk) has start and end nodes xp and xp41 = fi(Tk,uk), respectively. We
view the cost gy (x,u) of the transition as the length of this arc. The problem is
equivalent to finding a shortest path from initial nodes of stage 0 to the terminal
node t.

Discrete Optimal Control Problems

There are many situations where the state and control spaces are naturally
discrete and consist of a finite number of elements. Such problems are often
conveniently described with an acyclic graph specifying for each state zj the
possible transitions to next states xx41. The nodes of the graph correspond
to states xp and the arcs of the graph correspond to state-control pairs
(zk,ur). Each arc with start node xj, corresponds to a choice of a single
control uy € Ug(zr) and has as end node the next state f(zg,ur). The
cost of an arc (zg, ug) is defined as g (zk, ug); see Fig. 1.2.2. To handle the
final stage, an artificial terminal node ¢ is added. Each state xn at stage
N is connected to the terminal node ¢ with an arc having cost gy (zn).

Note that control sequences {uo, ..., un—_1} correspond to paths orig-
inating at the initial state (a node at stage 0) and terminating at one of the
nodes corresponding to the final stage N. If we view the cost of an arc as
its length, we see that a deterministic finite-state finite-horizon problem is
equivalent to finding a minimum-length (or shortest) path from the initial
nodes of the graph (stage 0) to the terminal node t. Here, by the length of
a path we mean the sum of the lengths of its arcs.t

Generally, combinatorial optimization problems can be formulated as
deterministic finite-state finite-horizon optimal control problems. The idea

T It turns out also that any shortest path problem (with a possibly nona-
cyclic graph) can be reformulated as a finite-state deterministic optimal control
problem. See [Berl7a], Section 2.1, and [Ber91], [Ber98] for extensive accounts
of shortest path methods, which connect with our discussion here.
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Figure 1.2.3 The transition graph of the deterministic scheduling problem of
Example 1.2.1. Each arc of the graph corresponds to a decision leading from
some state (the start node of the arc) to some other state (the end node of the
arc). The corresponding cost is shown next to the arc. The cost of the last
operation is shown as a terminal cost next to the terminal nodes of the graph.

is to break down the solution into components, which can be computed
sequentially. The following is an illustrative example.

Example 1.2.1 (A Deterministic Scheduling Problem)

Suppose that to produce a certain product, four operations must be performed
on a given machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation C has
been performed. (Thus the sequence CDAB is allowable but the sequence
CDBA is not.) The setup cost Crny for passing from any operation m to any
other operation n is given. There is also an initial startup cost S4 or Sc for
starting with operation A or C, respectively (cf. Fig. 1.2.3). The cost of a
sequence is the sum of the setup costs associated with it; for example, the
operation sequence ACDB has cost Sa + Cac + Ceop +CpB.

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this
problem are shown in Fig. 1.2.3. Here the problem is deterministic, i.e., at a
given state, each choice of control leads to a uniquely determined state. For
example, at state AC the decision to perform operation D leads to state ACD



14 Exact and Approximate Dynamic Programming Chap. 1

with certainty, and has cost Ccp. Thus the problem can be conveniently
represented with the transition graph of Fig. 1.2.3 (which in turn is a special
case of the graph of Fig. 1.2.2). The optimal solution corresponds to the path
that starts at the initial state and ends at some state at the terminal time
and has minimum sum of arc costs plus the terminal cost.

1.2.2 The Dynamic Programming Algorithm

In this section we will state the DP algorithm and formally justify it. Gen-
erally, DP is used to solve a problem of sequential decision making over N
stages, by breaking it down to a sequence of simpler single-stage problems.

In particular, the algorithm aims to find a sequence of optimal con-
trols ug, ..., u}_, by generating a corresponding sequence of optimal cost
functions J§, ..., JJy_,. It starts with J3 equal to the terminal cost func-
tion gy and computes the next function J3 _,, by solving a single stage
decision problem whose optimization variable is unx_1. It then uses Jy_;
to compute Jy,_,, and proceeds similarly to compute all the remaining cost
functions Jy_s,...,J5.

The algorithm rests on a simple idea, the principle of optimality,
which roughly states the following; see Fig. 1.2.4.

Principle of Optimality

Let {ug,...,uj_,} be an optimal control sequence, which together
with zo determines the corresponding state sequence {7, ...,z } via
the system equation (1.1). Consider the subproblem whereby we start
at xj, at time k and wish to minimize the “cost-to-go” from time k to
time N,
N—1
ge@hur) + Y gm(@m, tm) + gy (@N),
m=k+1

over {ug,...,un—1} with up, € Upn(2m), m =k,..., N — 1. Then the
truncated optimal control sequence {uj},...,u}_;} is optimal for this
subproblem.

The subproblem referred to above is called the tail subproblem that
starts at x}. Stated succinctly, the principle of optimality says that the
tail of an optimal sequence is optimal for the tail subproblem. Its intuitive
justification is simple. If the truncated control sequence {u},...,u%_;}
were not optimal as stated, we would be able to reduce the cost further
by switching to an optimal sequence for the subproblem once we reach z}
(since the preceding choices of controls, ug, ..., u;_;, do not restrict our
future choices).

For an auto travel analogy, suppose that the fastest route from Phoenix
to Boston passes through St Louis. The principle of optimality translates
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Figure 1.2.4 Schematic illustration of the principle of optimality. The tail
{uj,...,ujy_1} of an optimal sequence {ug,...,uy_;} is optimal for the tail
subproblem that starts at the state x} of the optimal state trajectory.

to the obvious fact that the St Louis to Boston portion of the route is also
the fastest route for a trip that starts from St Louis and ends in Boston.f}

The principle of optimality suggests that the optimal cost function
can be constructed in piecemeal fashion going backwards: first compute
the optimal cost function for the “tail subproblem” involving the last stage,
then solve the “tail subproblem” involving the last two stages, and continue
in this manner until the optimal cost function for the entire problem is
constructed.

The DP algorithm is based on this idea: it proceeds sequentially by
solving all the tail subproblems of a given time length, using the solution
of the tail subproblems of shorter time length. We illustrate the algorithm
with the scheduling problem of Example 1.2.1. The calculations are simple
but tedious, and may be skipped without loss of continuity. However, they
may be worth going over by a reader that has no prior experience in the
use of DP.

Example 1.2.1 (Scheduling Problem - Continued)

Let us consider the scheduling Example 1.2.1, and let us apply the principle of
optimality to calculate the optimal schedule. We have to schedule optimally
the four operations A, B, C, and D. There is a cost for a transition between
two operations, and the numerical values of the transition costs are shown in
Fig. 1.2.5 next to the corresponding arcs.

According to the principle of optimality, the “tail” portion of an optimal
schedule must be optimal. For example, suppose that the optimal schedule
is CABD. Then, having scheduled first C and then A, it must be optimal to
complete the schedule with BD rather than with DB. With this in mind, we
solve all possible tail subproblems of length two, then all tail subproblems of
length three, and finally the original problem that has length four (the sub-
problems of length one are of course trivial because there is only one operation

T In the words of Bellman [Bel57]: “An optimal trajectory has the
property that at an intermediate point, no matter how it was reached, the
rest of the trajectory must coincide with an optimal trajectory as computed
from this intermediate point as the starting point.”
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Figure 1.2.5 Transition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (cf.
the principle of optimality). The optimal cost for the original problem is equal
to 10, as shown next to the initial state. The optimal schedule corresponds
to the thick-line arcs.

that is as yet unscheduled). As we will see shortly, the tail subproblems of
length k 4+ 1 are easily solved once we have solved the tail subproblems of
length k, and this is the essence of the DP technique.

Tail Subproblems of Length 2: These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, and
CD (see Fig. 1.2.5).

State AB: Here it is only possible to schedule operation C as the next op-
eration, so the optimal cost of this subproblem is 9 (the cost of schedul-
ing C after B, which is 3, plus the cost of scheduling D after C, which
is 6).

State AC': Here the possibilities are to (a) schedule operation B and then
D, which has cost 5, or (b) schedule operation D and then B, which has
cost 9. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 5, as shown next to node AC in Fig. 1.2.5.

State C'A: Here the possibilities are to (a) schedule operation B and then
D, which has cost 3, or (b) schedule operation D and then B, which has
cost 7. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 3, as shown next to node CA in Fig. 1.2.5.

State CD: Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.
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Tail Subproblems of Length 3: These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B (cost
2) and then solve optimally the corresponding subproblem of length 2
(cost 9, as computed earlier), a total cost of 11, or (b) schedule next
operation C (cost 3) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 8.
The second possibility is optimal, and the corresponding cost of the tail
subproblem is 8, as shown next to node A in Fig. 1.2.5.

State C': Here the possibilities are to (a) schedule next operation A (cost
4) and then solve optimally the corresponding subproblem of length 2
(cost 3, as computed earlier), a total cost of 7, or (b) schedule next
operation D (cost 6) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 11.
The first possibility is optimal, and the corresponding cost of the tail
subproblem is 7, as shown next to node C in Fig. 1.2.5.

Original Problem of Length 4: The possibilities here are (a) start with oper-
ation A (cost 5) and then solve optimally the corresponding subproblem of
length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start with
operation C (cost 3) and then solve optimally the corresponding subproblem
of length 3 (cost 7, as computed earlier), a total cost of 10. The second pos-
sibility is optimal, and the corresponding optimal cost is 10, as shown next
to the initial state node in Fig. 1.2.5.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the optimal
schedule: we begin at the initial node and proceed forward, each time choosing
the optimal operation, i.e., the one that starts the optimal schedule for the
corresponding tail subproblem. In this way, by inspection of the graph and the
computational results of Fig. 1.2.5, we determine that CABD is the optimal
schedule.

Finding an Optimal Control Sequence by DP

We now state the DP algorithm for deterministic finite horizon problems
by translating into mathematical terms the heuristic argument underlying
the principle of optimality. The algorithm constructs functions

In(@n), Iy _q(@n-1),. .. Jg (o),

sequentially, starting from J;,, and proceeding backwards to J;,il, J;PQ,
etc. We will show that the value J; (z)) represents the optimal cost of the
tail subproblem that starts at state zj; at time k.
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Tail subproblem
Ty, Optimal Cost J} (xr)

L > >0 N
0 k
Tail subproblem
Zr+1  Opt. Cost J;I+1($k+1) o
, Tail subproblem
Tk, Tk+1 Opt. Cost Jifyy (2314)
® > > N
0
. Tail subproblem
Tr41 Opt. Cost JF . ()
p k+1( k+1) ve N

Figure 1.2.6 Illustration of the DP algorithm. The tail subproblem that starts
at xp at time k minimizes over {uy,...,un—1} the “cost-to-go” from k to N,

N-1
k(@) + Y gm(@myum) + gn(an).
m=k+1

To solve it, we choose uy to minimize the (1st stage cost + Optimal tail problem
cost) or

Je(er) = min [gk(f%,uw+J;:+1(fk(~’0k7%))}
up €U (z)

DP Algorithm for Deterministic Finite Horizon Problems

Start with
In(zN) = gn(zN), for all xy, (1.4)

and for k=0,...,N —1, let

Jo(zk) = min |gg(zk, uk) + JZ+1 (fk(:z:k,uk))}, for all zy.
up €U ()
(1.5)

The DP algorithm together with the construction of the functions
J; (z1,) are illustrated in Fig. 1.2.6. Note that at stage k, the calculation in
Eq. (1.5) must be done for all states xj before proceeding to stage k — 1.
The key fact about the DP algorithm is that for every initial state xo,
the number J; (z) obtained at the last step, is equal to the optimal cost
J*(x0). Indeed, a more general fact can be shown, namely that for all
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k=0,1,...,N — 1, and all states x; at time k, we have

Iy (k) = . Erg}lir%z : J(xp; ugy .o uN—1), (1.6)
ks N

where J(zy;uk, ..., un—_1) is the cost generated by starting at x, and using
subsequent controls ug, ..., unN—1:
N-1
J(@hiuk, . un—1) = gn(En) + Y gl ue). (1.7)
t=k

Thus, J, (zx) is the optimal cost for an (N — k)-stage tail subproblem
that starts at state z, and time k, and ends at time N.t Based on the
interpretation (1.6) of J(xy), we call it the optimal cost-to-go from state
xy at stage k, and refer to J}! as the optimal cost-to-go function or optimal
cost function at time k. In maximization problems the DP algorithm (1.5)
is written with maximization in place of minimization, and then J}| is
referred to as the optimal value function at time k.

Once the functions Jg R, J;, have been obtained, we can use a for-
ward algorithm to construct an optimal control sequence {ug,...,ux_;}
and corresponding state trajectory {z7,..., 2%} for the given initial state
xXo.

T We can prove this by induction. The assertion holds for K = N in view of
the initial condition

Jn(zn) = gn(zN).

To show that it holds for all k, we use Egs. (1.6) and (1.7) to write

N-—-1
A=, o)+ S oten)
t=k,...,N—1

= min lgk (zh, ur)

up €U (zg)
N-1
min x T U
* up €U (x¢) [QN( N)+ Z gt( t t)‘|‘|
t=k+1,...,N—1 t=k+1

= min [gk(:cm ug) + Jpg1 (fk(:cm Uk)):| ,
ukGUk(zk)

where for the last equality we use the induction hypothesis. A subtle mathe-
matical point here is that, through the minimization operation, the cost-to-go
functions J; may take the value —oo for some x. Still the preceding induction
argument is valid even if this is so.
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Construction of Optimal Control Sequence {uj,...,u}_;}

Set

ug € arg  min | go(xo, uo) + Jf(fo(wo,uo))},
ug€Up(zo)

and
27 = fol(zo, ug).
Sequentially, going forward, for K =1,2,..., N — 1, set

uf € arg min gr(xr, uk) + JZH (fk(xz,uk))}, (1.8)
up €UE ()

and
Thpq = fel@h, up).

The same algorithm can be used to find an optimal control sequence
for any tail subproblem. Figure 1.2.5 traces the calculations of the DP
algorithm for the scheduling Example 1.2.1. The numbers next to the
nodes, give the corresponding cost-to-go values, and the thick-line arcs
give the construction of the optimal control sequence using the preceding
algorithm.

The following example deals with the classical traveling salesman
problem involving N cities. Here, the number of states grows exponen-
tially with IV, and so does the corresponding amount of computation for
exact DP. We will show later that with rollout, we can solve the problem
approximately with computation that grows polynomially with N.

Example 1.2.2 (The Traveling Salesman Problem)

Here we are given N cities and the travel time between each pair of cities.
We wish to find a minimum time travel that visits each of the cities exactly
once and returns to the start city. To convert this problem to a DP problem,
we form a graph whose nodes are the sequences of k distinct cities, where
k=1,...,N. The k-city sequences correspond to the states of the kth stage.
The initial state zo consists of some city, taken as the start (city A in the
example of Fig. 1.2.7). A k-city node/state leads to a (k + 1)-city node/state
by adding a new city at a cost equal to the travel time between the last two
of the k + 1 cities; see Fig. 1.2.7. Each sequence of N cities is connected
to an artificial terminal node ¢ with an arc of cost equal to the travel time
from the last city of the sequence to the starting city, thus completing the
transformation to a DP problem.

The optimal costs-to-go from each node to the terminal state can be ob-
tained by the DP algorithm and are shown next to the nodes. Note, however,
that the number of nodes grows exponentially with the number of cities N.
This makes the DP solution intractable for large N. As a result, large travel-
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Initial State xg

1
3]
20 3

18[aBc| 4[aBD| 19[acB| 24{AcD|  21[ADB| 40{ADC|

4 3

3 3 4 4 20 20

15 |ABCD| 1|ABDC| 15 |ACBD| 20|ACDB| 1|ADBC| 20|ADCB|

1 15 20 1

A

Matrix of Intercity
Travel Costs

Terminal State ¢

Figure 1.2.7 The DP formulation of the traveling salesman problem of Ex-
ample 1.2.2. The travel times between the four cities A, B, C, and D are
shown in the matrix at the bottom. We form a graph whose nodes are the
k-city sequences and correspond to the states of the kth stage, assuming that
A is the starting city. The transition costs/travel times are shown next to the
arcs. The optimal costs-to-go are generated by DP starting from the termi-
nal state and going backwards towards the initial state, and are shown next
to the nodes. There is a unique optimal sequence here (ABDCA), and it is
marked with thick lines. The optimal sequence can be obtained by forward
minimization [cf. Eq. (1.8)], starting from the initial state zq.

ing salesman and related scheduling problems are typically not addressed with
exact DP, but rather with approximation methods. Some of these methods
are based on DP and will be discussed later.

Q-Factors and Q-Learning

An alternative (and equivalent) form of the DP algorithm (1.5), uses the
optimal cost-to-go functions JZ indirectly. In particular, it generates the
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optimal Q-factors, defined for all pairs (z,ux) and k by

Qe ur) = gr(@r, ur) + Ty (Fr(or, ur)). (1.9)

Thus the optimal Q-factors are simply the expressions that are minimized
in the right-hand side of the DP equation (1.5).}

Note that the optimal cost function J;: can be recovered from the
optimal Q-factor QZ by means of the minimization

Iy () = uk£i?zk>Qz<x’“’“’“)' (1.10)

Moreover, the DP algorithm (1.5) can be written in an essentially equivalent
form that involves Q-factors only [cf. Eqgs. (1.9)-(1.10)]:

Q. (s ur) = gr(wr, ur) + min Qpepr (fr(n, un), wg)
U1 €Uk 41 (i (g, up))

Exact and approximate forms of this and other related algorithms, in-
cluding counterparts for stochastic optimal control problems, comprise an
important class of RL methods known as Q-learning.

1.2.3 Approximation in Value Space and Rollout

The forward optimal control sequence construction of Eq. (1.8) is possible
only after we have computed JZ(:vk) by DP for all x; and k. Unfortu-
nately, in practice this is often prohibitively time-consuming, because the
number of possible x; and k can be very large. However, a similar forward
algorithmic process can be used if the optimal cost-to-go functions JZ are
replaced by some approximations Jy,. This is the basis for an idea that is
central in RL: approzimation in value space.f It constructs a suboptimal
solution {to,...,un—1} in place of the optimal {ug,...,u%_,}, based on
using Jj, in place of JZ in the DP algorithm (1.8).

T The term “Q-factor” has been used in the books [BeT96], [Ber19a], [Ber20a]
and is adopted here as well. Another term used is “action value” (at a given
state). The terms “state-action value” and “Q-value” are also common in the
literature. The name “Q-factor” originated in reference to the notation used in
an influential Ph.D. thesis [Wat89] that proposed the use of Q-factors in RL.

1 Approximation in value space (sometimes called “search” or “tree search”
in the AI literature) is a simple idea that has been used quite extensively for
deterministic problems, well before the development of the modern RL method-
ology. For example it conceptually underlies the widely used A* method for
computing approximate solutions to large scale shortest path problems. For a
view of A* that is consistent with our approximate DP framework, the reader
may consult the author’s DP book [Berl7a].
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Approximation in Value Space - Use of J; in Place of J,:

Start with

Ug € arg  min [Qo(ﬂﬁo,w)) +.Ji (fo(ﬂﬁo,w)))},
up€Up(z0)

and set
Z1 = fo(wo, to).

Sequentially, going forward, for K =1,2,..., N — 1, set

U € arg  min | gx(Tk, uk) + jk+1 (fk:(iz'kaukr))}a (1.11)
ug €Uy (Z,)

and
Tht1 = fe(@k, Ur)-

In approximation in value space the calculation of the suboptimal
sequence {do,...,un—_1} is done by going forward (no backward calcula-
tion is needed once the approximate cost-to-go functions Jj, are available).
This is similar to the calculation of the optimal sequence {ug,...,u}y_;},

and is independent of how the functions J; are computed. The motivation
for approximation in value space for stochastic DP problems is vastly re-
duced computation relative to the exact DP algorithm (once Ji, have been
obtained): the minimization (1.11) needs to be performed only for the N
states xo,T1,...,Tn—1 that are encountered during the on-line control of
the system, and not for every state within the potentially enormous state
space, as is the case for exact DP.

The algorithm (1.11) is said to involve a one-step lookahead minimiza-
tion, since it solves a one-stage DP problem for each k. In what follows we
will also discuss the possibility of multistep lookahead, which involves the
solution of an ¢-step DP problem, where ¢ is an integer, 1 < { < N — k,
with a terminal cost function approximation ij. Multistep lookahead
typically (but not always) provides better performance over one-step looka-
head in RL approximation schemes. For example in AlphaZero chess, long
multistep lookahead is critical for good on-line performance. The intuitive
reason is that with ¢ stages being treated “exactly” (by optimization), the
effect of the approximation error

4 *
e — Jk+€

tends to become less significant as £ increases. However, the solution of the
multistep lookahead optimization problem, instead of the one-step looka-
head counterpart of Eq. (1.11), becomes more time consuming,.
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Rollout with a Base Heuristic for Deterministic Problems

A major issue in value space approximation is the construction of suitable
approximate cost-to-go functions Jy.. This can be done in many different
ways, giving rise to some of the principal RL methods. For example, Ty may
be constructed with a sophisticated off-line training method, as discussed in
Section 1.1. Alternatively, Jj, may be obtained on-line with rollout, which
will be discussed in detail in this book. In rollout, the approximate values
jk(ack) are obtained when needed by running a heuristic control scheme,
called base heuristic or base policy, for a suitably large number of stages,
starting from the state xx, and accumulating the costs incurred at these
stages.

The major theoretical property of rollout is cost improvement: the
cost obtained by rollout using some base heuristic is less or equal to the
corresponding cost of the base heuristic. This is true for any starting state,
provided the base heuristic satisfies some simple conditions, which will be
discussed in Chapter 2.1

There are also several variants of rollout, including versions involv-
ing multiple heuristics, combinations with other forms of approximation
in value space methods, multistep lookahead, and stochastic uncertainty.
We will discuss such variants later. For the moment we will focus on a
deterministic DP problem with a finite number of controls. Given a state
T at time k, this algorithm considers all the tail subproblems that start
at every possible next state xx41, and solves them suboptimally by using
some algorithm, referred to as base heuristic.

Thus when at xy, rollout generates on-line the next states x4 that
correspond to all u, € Ug(zy), and uses the base heuristic to compute the
sequence of states {g41,...,2zn} and controls {ugy1, ..., un—1} such that

Teg1 = fe(me, ue), t=k,...,N—1,
and the corresponding cost
Hyp1(wpg1) = g1 (Tern, ung1) + -+ gv—1(zv—1,un—1) + gn(7N).

The rollout algorithm then applies the control that minimizes over u; €
Uy (zk) the tail cost expression for stages k to N:

9k (ke uk) + Hy1 (Th41)-

1 For an intuitive justification of the cost improvement mechanism, note that
the rollout control @ is calculated from Eq. (1.11) to attain the minimum over
ug over the sum of two terms: the first stage cost gi(Zk, ur) plus the cost of the
remaining stages (k+1 to N) using the heuristic controls. Thus rollout involves a
first stage optimization (rather than just using the base heuristic), which accounts
for the cost improvement. This reasoning also explains why multistep lookahead
tends to provide better performance than one-step lookahead in rollout schemes.
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Figure 1.2.9 Schematic illustration of rollout with one-step lookahead for a de-
terministic problem. At state zy, for every pair (zy,ur), ux € Ug(zy), the base
heuristic generates an approximate Q-factor

Qk @k, uk) = gk (@, ur) + Hepr (Fi(@r, ur)),

and selects the control fig(zg) with minimal Q-factor.

Equivalently, and more succinctly, the rollout algorithm applies at
state xy, the control i (x) given by the minimization

ix(x) € arg  min Qk(ack,uk), (1.12)
up €U (7g)

where Qg (zx, ur) is the approximate Q-factor defined by

Qi (@, ur) = gr(Th, u) + Higr (fr(@r, ur)); (1.13)

see Fig. 1.2.9.

Note that the rollout algorithm requires running the base heuristic
for a number of times that is bounded by Nn, where n is an upper bound
on the number of control choices available at each state. Thus if n is
small relative to IV, it requires computation equal to a small multiple of N
times the computation time for a single application of the base heuristic.
Similarly, if n is bounded by a polynomial in N, the ratio of the rollout
algorithm computation time to the base heuristic computation time is a
polynomial in N.

Example 1.2.3 (Traveling Salesman Problem)

Let us consider the traveling salesman problem of Example 1.2.2, whereby a
salesman wants to find a minimum cost tour that visits each of N given cities
c=0,...,N — 1 exactly once and returns to the city he started from. With
each pair of distinct cities ¢, ¢/, we associate a traversal cost g(c,c’). Note
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Figure 1.2.10 Rollout with the nearest neighbor heuristic for the traveling
salesman problem of Example 1.2.3. The initial state zo consists of a single
city. The final state zy is a complete tour of N cities, containing each city
exactly once.

that we assume that we can go directly from every city to every other city.
There is no loss of generality in doing so because we can assign a very high
cost g(c, ') to any pair of cities (¢, ¢’) that is precluded from participation in
the solution. The problem is to find a visit order that goes through each city
exactly once and whose sum of costs is minimum.

There are many heuristic approaches for solving the traveling salesman
problem. For illustration purposes, let us focus on the simple nearest neighbor
heuristic, which starts with a partial tour, i.e., an ordered collection of distinct
cities, and constructs a sequence of partial tours, adding to the each partial
tour a new city that does not close a cycle and minimizes the cost of the
enlargement. In particular, given a sequence {co, c1,...,cx} (with k < N—1)
consisting of distinct cities, the nearest neighbor heuristic adds a city ck+1
that minimizes g(ck, cx+1) over all cities cx4+1 # co, ..., Ck, thereby forming
the sequence {co,c1,...,Ck,ck+1}. Continuing in this manner, the heuristic
eventually forms a sequence of N cities, {co,c1,...,cn—1}, thus yielding a
complete tour with cost

g(co,c1) + -+ glen—2,en—1) + glen—1, o). (1.14)

We can formulate the traveling salesman problem as a DP problem as
we discussed in Example 1.2.2. We choose a starting city, say co, as the
initial state xo. Each state zx corresponds to a partial tour (co,ci,...,ck)
consisting of distinct cities. The states xx+1, next to zy, are sequences of the
form (co,c1,...,Ck, Cht+1) that correspond to adding one more unvisited city
Ck+1 # Co,C1,...,c, (thus the unvisited cities are the feasible controls at a
given partial tour/state). The terminal states xn are the complete tours of
the form (co,c1,...,¢cn-1,¢C0), and the cost of the corresponding sequence of
city choices is the cost of the corresponding complete tour given by Eq. (1.14).
Note that the number of states at stage k increases exponentially with k, and
so does the computation required to solve the problem by exact DP.

Let us now use as a base heuristic the nearest neighbor method. The
corresponding rollout algorithm operates as follows: After k < N — 1 it-
erations, we have a state xy, i.e., a sequence {co,...,c,} consisting of dis-
tinct cities. At the next iteration, we add one more city by running the
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Figure 1.2.11 Rollout with the nearest neighbor base heuristic, applied to a
traveling salesman problem. At city A, the nearest neighbor heuristic gener-
ates the tour ACDBA (labelled Tp). At city A, the rollout algorithm compares
the tours ABCDA, ACDBA, and ADCBA, finds ABCDA (labelled T}) to have
the least cost, and moves to city B. At AB, the rollout algorithm compares
the tours ABCDA and ABDCA, finds ABDCA (labelled T%) to have the least
cost, and moves to city D. The rollout algorithm then moves to cities C and
A (it has no other choice). The final tour T generated by rollout turns out to
be optimal in this example, while the tour Ty generated by the base heuristic
is suboptimal. This is suggestive of a general result: the rollout algorithm for
deterministic problems generates a sequence of solutions of decreasing cost
under some conditions on the base heuristic that we will discuss in Chapter
2, and which are satisfied by the nearest neighbor heuristic.

nearest neighbor heuristic starting from each of the sequences of the form
{co,...,ck,c} where ¢ # co,...,cr. We then select as next city cxy1 the city
c that yielded the minimum cost tour under the nearest neighbor heuristic;
see Fig. 1.2.10. The overall computation for the rollout solution is bounded
by a polynomial in N, and is much smaller than the exact DP computation.
Figure 1.2.11 provides an example where the nearest neighbor heuristic and
the corresponding rollout algorithm are compared; see also Exercise 1.1.
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STOCHASTIC EXACT AND APPROXIMATE DYNAMIC
PROGRAMMING

We will now extend the DP algorithm and our discussion of approximation
in value space to problems that involve stochastic uncertainty in their sys-
tem equation and cost function. We will first discuss the finite horizon case,
and the extension of the ideas underlying the principle of optimality and
approximation in value space schemes. We will then consider the infinite
horizon version of the problem, and provide an overview of the underlying
theory and algorithmic methodology.

1.3.1 Finite Horizon Problems

The stochastic optimal control problem differs from its deterministic coun-
terpart primarily in the nature of the discrete-time dynamic system that
governs the evolution of the state xp. This system includes a random
“disturbance” wy, with a probability distribution Pg(- | xk,ur) that may
depend explicitly on xj and ug, but not on values of prior disturbances
Wk—1,---,Wo. The system has the form

xk+1:fk(xk7uk7wk)a k:Oalv"'vN_lv

where as earlier xj, is an element of some state space, the control uy, is an ele-
ment of some control space.t The cost per stage is denoted by gi (xg, ug, wi)
and also depends on the random disturbance wy; see Fig. 1.3.1. The control
ug is constrained to take values in a given subset Uy (zy), which depends
on the current state xj.

Given an initial state zo and a policy = = {uo,...,un—1}, the fu-
ture states x; and disturbances w; are random variables with distributions
defined through the system equation

Ik+1:fk(xk;,uk(xk)awk)a k:O,l,...,N—l,

1 The discrete equation format and corresponding x-u-w notation is stan-
dard in the optimal control literature. For finite-state stochastic problems, also
called Markovian Decision Problems (MDP), the system is often represented con-
veniently in terms of control-dependent transition probabilities. A common no-
tation in the RL literature is p(s,a,s’) for transition probability from s to s’
under action a. This type of notation is not well suited for deterministic prob-
lems, which involve no probabilistic structure at all and are of major interest in
this book. The transition probability notation is also cumbersome for problems
with a continuous state space; see Sections 1.7.1 and 1.7.2 for further discussion.
The reader should note, however, that mathematically the system equation and
transition probabilities are equivalent, and any analysis that can be done in one
notational system can be translated to the other notational system.
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Figure 1.3.1 Illustration of an N-stage stochastic optimal control problem.
Starting from state xj, the next state under control uj is generated randomly,
according to xx41 = fi(zk, uk, wy), where wy, is the random disturbance, and a
random stage cost gx(zk, ur,wy) is incurred.

and the given distributions Py(- | g, ug). Thus, for given functions g,
k=0,1,..., N, the expected cost of 7 starting at xg is

N-1
Jr(xo) = L {QN(wN) + Z gk(wkaﬂk(xk)awk)} :
k=0,...N—1

k=0

where the expected value operation E{-} is taken with respect to the joint
distribution of all the random variables wy, and zx.t An optimal policy 7*
is one that minimizes this cost; i.e.,

Jox (w0) = min Jx (o),

where II is the set of all policies.

An important difference from the deterministic case is that we opti-
mize not over control sequences {uo, ...,un—1} [cf. Eq. (1.3)], but rather
over policies (also called closed-loop control laws, or feedback policies) that
consist of a sequence of functions

™= {ILLO,---,,UN_l},

where pj, maps states zy into controls uy = ux(xy), and satisfies the con-
trol constraints, i.e., is such that ug(xg) € Ug(zy) for all zp. Policies
are more general objects than control sequences, and in the presence of
stochastic uncertainty, they can result in improved cost, since they allow
choices of controls uy, that incorporate knowledge of the state xx. Without
this knowledge, the controller cannot adapt appropriately to unexpected
values of the state, and as a result the cost can be adversely affected. This
is a fundamental distinction between deterministic and stochastic optimal
control problems.

T We assume an introductory probability background on the part of the
reader. For an account that is consistent with our use of probability in this
book, see the textbook by Bertsekas and Tsitsiklis [BeT08].
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The optimal cost depends on zy and is denoted by J*(zo); i.e.,

J*(x0) = min Jr(x0).

We view J* as a function that assigns to each initial state x¢ the optimal
cost J*(z0), and call it the optimal cost function or optimal value function.

Stochastic Dynamic Programming

The DP algorithm for the stochastic finite horizon optimal control problem
has a similar form to its deterministic version, and shares several of its
major characteristics:

(a) Using tail subproblems to break down the minimization over multiple
stages to single stage minimizations.

(b) Generating backwards for all k and zj, the values J, (x), which give
the optimal cost-to-go starting from state xzj at stage k.
(¢) Obtaining an optimal policy by minimization in the DP equations.

(d) A structure that is suitable for approximation in value space, whereby
* . . 4 . . .
we replace J, by approximations Ji, and obtain a suboptimal policy
by the corresponding minimization.

DP Algorithm for Stochastic Finite Horizon Problems
Start with

In(an) = gn(zn),
and for k=0,...,N —1, let

JZ(wk)z min Ewk{gk(xk,uk,wk)—i—JZH(fk(:Ek,uk,wk))}.
up €U (zk)
(1.15)

For each zj and k, define puf(zx) = uj where u} attains the min-
imum in the right side of this equation. Then, the policy 7m* =

{ugs - w1} is optimal.

The key fact is that starting from any initial state xo, the optimal
cost is equal to the number J; (7o), obtained at the last step of the above
DP algorithm. This can be proved by induction similar to the deterministic
case; we will omit the proof (which incidentally involves some mathematical
fine points; see the discussion of Section 1.3 in the textbook [Berl7al).

Simultaneously with the off-line computation of the optimal cost-
to-go functions Jg, ey JX,, we can compute and store an optimal policy
m = {us, ..., y_1} by minimization in Eq. (1.15). We can then use this
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policy on-line to retrieve from memory and apply the control p (zy) once
we reach state xp. The alternative is to forego the storage of the policy 7*
and to calculate the control () by executing the minimization (1.15)
on-line.

There are a few favorable cases where the optimal cost-to-go func-
tions J, Z and the optimal policies p; can be computed analytically using the
stochastic DP algorithm. A prominent such case involves a linear system
and a quadratic cost function, which is a fundamental problem in control
theory. We illustrate the scalar version of this problem next. The anal-
ysis can be generalized to multidimensional systems (see optimal control
textbooks such as [Berl7a]).

Example 1.3.1 (Linear Quadratic Optimal Control)
Here the system is linear,
Tk4+1 = ark + bur + wg, k=0,...,N—1,

and the state, control, and disturbance are scalars. The cost is quadratic of
the form:

N—-1
o + Y (qzk + i),
k=0

where ¢ and r are known positive weighting parameters. We assume no
constraints on z and ux (in reality such problems include constraints, but
it is common to neglect the constraints initially, and check whether they are
seriously violated later).

As an illustration, consider a vehicle that moves on a straight-line road
under the influence of a force ux and without friction. Our objective is to
maintain the vehicle’s velocity at a constant level ¥ (as in an oversimplified
cruise control system). The velocity vy at time k, after time discretization of
its Newtonian dynamics and addition of stochastic noise, evolves according
to

Vg1 = vk + buk + w, (1.16)

where wy, is a stochastic disturbance with zero mean and given variance 2.

By introducing xx = vr — v, the deviation between the vehicle’s velocity v
at time k from the desired level v, we obtain the system equation

Th4+1 = Tk + bug + wy.

Here the coefficient b relates to a number of problem characteristics including
the weight of the vehicle, the road conditions. The cost function expresses
our desire to keep z near zero with relatively little force.

We will apply the DP algorithm, and derive the optimal cost-to-go
functions J; and optimal policy. We have
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and by applying Eq. (1.15), we obtain
Jy_1(zny—1) = min E{qx?v,l + ru?\,,l + Jy(axzn—1 +bun—1 + wal)}

UN-—-1

= min E{qx?\;,l + ru?\;,l + glaxn—1 + bun—1 + wal)z}
uN-_1

= min [q:c?v,l +rud_ + qlaxn—1 + buN,1)2
uN_1

+2gE{wn-1}(azn-1 + bun-1) + gE{wi 1}],

and finally, using the assumptions E{wnx_1} = 0, E{w%_;} = ¢, and bring-
ing out of the minimization the terms that do not depend on un_1,

In_1(zN-1) = qrxn_1 +qo® + min [ru?v,l +qlazn-1 + buNfl)Q}. (1.17)
un_1

The expression minimized over uny—_1 in the preceding equation is convex
quadratic in un—1, so by setting to zero its derivative with respect to un—_1,

0=2runy—1+ 2¢b(azn—1 + bun—1),
we obtain the optimal policy for the last stage:

__abg .
r+ b2%q N=

prn—1(zn-1) = 1.

Substituting this expression into Eq. (1.17), we obtain with a straightforward
calculation
Iy 1(zn-1) = K125y +qo?,

where )
a‘rq

Kno1=——7—
N-1 T b2g

+q.

We can now continue the DP algorithm to obtain Jy_, from Jy_;.
An important observation is that Jy_; is quadratic (plus an inconsequential
constant term), so with a similar calculation we can derive puy_o and Jy_o
in closed form, as a linear and a quadratic (plus constant) function of xn_2,
respectively. This process can be continued going backwards, and it can be
verified by induction that for all k, we obtain the optimal policy and optimal
cost-to-go function in the form

uZ(mk):Lkmk7 k:O717...7,Z\7—17

N-1
Jﬁm):KW$H#§:KHh k=0,1,...,N —1,
t=k

where
akaH

Ly = — 20kt
k T+b2Kk+17

k=0,1,...,N —1, (1.18)
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and the sequence { Ky} is generated backwards by the equation

aQTKkH

Ky=———"7¢69+—+4/—
k T+62Kk+1

+q, k=0,1,...,N—1, (1.19)

starting from the terminal condition Ky = gq.

The process by which we obtained an analytical solution in this example
is noteworthy. A little thought while tracing the steps of the algorithm will
convince the reader that what simplifies the solution is the quadratic nature
of the cost and the linearity of the system equation. Indeed, it can be shown
in generality that when the system is linear and the cost is quadratic, the
optimal policy and cost-to-go function are given by closed-form expressions,
even for multi-dimensional linear systems (see [Berl7a], Section 3.1). The
optimal policy is a linear function of the state, and the optimal cost function
is a quadratic in the state plus a constant.

Another remarkable feature of this example, which can also be extended
to multi-dimensional systems, is that the optimal policy does not depend on
the variance of wy, and remains unaffected when wy is replaced by its mean
(which is zero in our example). This is known as certainty equivalence, and
occurs in several types of problems involving a linear system and a quadratic
cost; see [Berl7a], Sections 3.1 and 4.2. For example it holds even when wy,
has nonzero mean. For other problems, certainty equivalence can be used as
a basis for problem approximation, e.g., assume that certainty equivalence
holds (i.e., replace stochastic quantities by some typical values, such as their
expected values) and apply exact DP to the resulting deterministic optimal
control problem. This is an important part of the RL methodology, which we
will discuss later in this chapter, and in more detail in Chapter 2.

Note that the linear quadratic type of problem illustrated in the pre-
ceding example is exceptional in that it admits an elegant analytical solu-
tion. Most DP problems encountered in practice require a computational
solution.

Q-Factors and Q-Learning for Stochastic Problems
Similar to the case of deterministic problems [cf. Eq. (1.9)], we can define
optimal Q-factors for a stochastic problem, as the expressions that are

minimized in the right-hand side of the stochastic DP equation (1.15).
They are given by

QZ(mk,uk) = Ewk{gk(:vk,uk,wk) + J;:Jrl (fk(xk,uk, wk))}. (1.20)

The optimal cost-to-go functions JZ can be recovered from the optimal
Q-factors QZ by means of

J* _ . * 7 ,
(o) =, 2 Qi)
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and the DP algorithm can be written in terms of Q-factors as
QZ(Ik; uk) :Ewk {gk(xk; ukv wk)

. *
min Q ez, ug, W), Ugt1 }
Up41 €Uk 41 (Fi (g up,wy ) ik ( Y , )

We will later be interested in approximate Q-factors, where JZ 41 in
Eq. (1.20) is replaced by an approximation jk+1. Again, the Q-factor
corresponding to a state-control pair (xg,uy) is the sum of the expected
first stage cost using (xg, uk), plus the expected cost of the remaining stages
starting from the next state as estimated by the function Jj ;.

1.3.2 Approximation in Value Space for Stochastic DP

Generally the computation of the optimal cost-to-go functions J,: can be
very time-consuming or impossible. One of the principal RL methods to
deal with this difficulty is approximation in value space. Here approxima-
tions J, are used in place of JZ, similar to the deterministic case; cf. Egs.
(1.8) and (1.11).

Approximation in Value Space - Use of J; in Place of JZ

At any state xp encountered at stage k, set

b (z) € arg  min Ewk{gk(;vk,uk,wk) + jk+1 (fk(xk,uk,wk))}.
up €U ()
(1.21)

The one-step lookahead minimization (1.21) needs to be performed
only for the IV states xo, ..., xny—1 that are encountered during the on-line
control of the system. By contrast, exact DP requires that this type of
minimization be done for every state and stage.

The Three Approximations

When designing approximation in value space schemes, one may consider
several interesting simplification ideas, which are aimed at alleviating the
computational overhead. Aside from cost function approximation (use j;g+1
in place of JZH), there are other possibilities. One of them is to simplify
the lookahead minimization over uy € Ug(xy) [cf. Eq. (1.15)] by replacing
Ui (xy) with a suitably chosen subset of controls that are viewed as most
promising based on some heuristic criterion.

In Section 1.6.5, we will discuss a related idea for control space sim-
plification for the multiagent case where the control consists of multiple
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components, ug = (uj,...,ul"). Then, a sequence of m single component
minimizations can be used instead, with potentially enormous computa-
tional savings resulting.

Another type of simplification relates to approximations in the com-
putation of the expected value in Eq. (1.21) by using limited Monte Carlo
simulation. The Monte Carlo Tree Search method, which will be discussed
in Chapter 2, Section 2.7.4, is one possibility of this type.

Still another type of expected value simplification is based on the cer-
tainty equivalence approach, which will be discussed in more detail in Chap-
ter 2, Section 2.7.2. In this approach, at stage k, we replace the future ran-
dom variables w41, ..., Wgtm by some deterministic values W41, - . . , Wktm,
such as their expected values. We may also view this as a form of prob-
lem approximation, whereby for the purpose of computing jk+1 (Tgt1), we
“pretend” that the problem is deterministic, with the future random quan-
tities replaced by deterministic typical values. This is one of the most
effective techniques to make approximation in value space for stochastic
problems computationally tractable, particularly when it is also combined
with multistep lookahead minimization, as we will discuss later.

Figure 1.3.2 illustrates the three approximations involved in approx-
imation in value space for stochastic problems: cost-to-go approzimation,
simplified minimization, and expected value approximation. They may be
designed largely independently of each other, and may be implemented
with a variety of methods. Much of the discussion in this book will revolve
around different ways to organize these three approximations for both cases
of one-step and multistep lookahead.

As indicated in Fig. 1.3.2, an important approach for cost-to-go ap-
proximation is problem approximation, whereby the functions j;g+1 in Eq.
(1.21) are obtained as the optimal or nearly optimal cost functions of a
simplified optimization problem, which is more convenient for computa-
tion. Simplifications may include exploiting decomposable structure, ig-
noring various types of uncertainties, and reducing the size of the state
space. Several types of problem approximation approaches are discussed
in the author’s RL book [Ber19a]. A major approach is aggregation, which
will be discussed in Section 3.5. In this book, problem approximation will
not receive much attention, despite the fact that it can often be combined
very effectively with the approximation in value space methodology that is
our main focus.

Another important approach for on-line cost-to-go approximation is
rollout, which we discuss next. This is similar to the rollout approach for
deterministic problems, discussed in Section 1.2.

Rollout for Stochastic Problems - Truncated Rollout

In the rollout approach, we select J; 11 in Eq. (1.21) to be the cost function
of a suitable base policy (perhaps with some approximation). Note that
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Approximate F{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
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Monte Carlo tree search Neural nets
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Figure 1.3.2 Schematic illustration of approximation in value space for stochastic
problems, and the three approximations involved in its design. Typically the
approximations can be designed independently of each other, and with a variety
of approaches. There are also multistep lookahead versions of approximation in
value space, which will be discussed later.

any policy can be used on-line as base policy, including policies obtained
by a sophisticated off-line procedure, using for example neural networks
and training data. The rollout algorithm has a cost improvement property,
whereby it yields an improved cost relative to its underlying base policy. We
will discuss this property and some conditions under which it is guaranteed
to hold in Chapter 2.

A major variant of rollout is truncated rollout, which combines the
use of one-step optimization, simulation of the base policy for a certain
number of steps m, and then adds an approximate cost jk+m+1(xk+m+1)
to the cost of the simulation, which depends on the state zj4,,4+1 obtained
at the end of the rollout. Note that if one foregoes the use of a base policy
(i.e., m = 0), one recovers as a special case the general approximation in
value space scheme (1.21); see Fig. 1.3.3. Thus rollout provides an extra
layer of lookahead to the one-step minimization, but this lookahead need
not extend to the end of the horizon.

Note also that versions of truncated rollout with multistep lookahead
minimization are possible. They will be discussed later. The terminal cost
approximation is necessary in infinite horizon problems, since an infinite
number of stages of the base policy rollout is impossible. However, even for
finite horizon problems it may be necessary and/or beneficial to artificially
truncate the rollout horizon. Generally, a large combined number of mul-
tistep lookahead minimization and rollout steps is likely to be beneficial.

Cost Versus Q-Factor Approximations - Robustness and On-
Line Replanning

Similar to the deterministic case, Q-learning involves the calculation of
either the optimal Q-factors (1.20) or approximations Qg (zg,ux). The
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Figure 1.3.3 Schematic illustration of truncated rollout. One-step lookahead is
followed by simulation of the base policy for m steps, and an approximate cost
jk+m+1(mk+m+1) is added to the cost of the simulation, which depends on the
state Tjym+1 obtained at the end of the rollout. If the base policy simulation
is omitted (i.e., m = 0), one recovers the general approximation in value space
scheme (1.21). Truncated rollout with multistep lookahead is also possible and is
discussed in some detail in Chapter 2.

approximate Q-factors may be obtained using approximation in value space
schemes, and can be used to obtain approximately optimal policies through
the Q-factor minimization

fie(zk) € arg  min  Qr(zk, uk). (1.22)
u €U (zk)

Since it is possible to implement approximation in value space by
using cost function approximations [cf. Eq. (1.21)] or by using Q-factor ap-
proximations [cf. Eq. (1.22)], the question arises which one to use in a given
practical situation. One important consideration is the facility of obtain-
ing suitable cost or Q-factor approximations. This depends largely on the
problem and also on the availability of data on which the approximations
can be based. However, there are some other major considerations.

In particular, the cost function approximation scheme

fu(zr) € arg  min Ewk{gk($kaukawk) + jk-i—l(fk(«%'kaukawk))}a
ug €Uk (k)
(1.23)

has an important disadvantage: the expected value above needs to be com-
puted on-line for all uy € Ug(xy), and this may involve substantial compu-
tation. It also has an important advantage in situations where the system
function fy, the cost per stage gi, or the control constraint set Uy (zx) can
change as the system is operating. Assuming that the new fx, g, or Ug(zk)
become known to the controller at time k, on-line replanning may be used,
and this may improve substantially the robustness of the approximation in
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value space scheme. By comparison, the Q-factor function approximation
scheme (1.22) does not allow for on-line replanning. On the other hand, for
problems where there is no need for on-line replanning, the Q-factor ap-
proximation scheme may not require the on-line computation of expected
values and may allow a much faster on-line computation of the minimizing
control fir(zx) via Eq. (1.22).

One more disadvantage of using Q-factors will emerge later, as we
discuss the synergy between off-line training and on-line play based on
Newton’s method; see Section 1.5. In particular, we will interpret the
cost function of the lookahead minimization policy {fio, ..., fin—1} as the
result of one step of Newton’s method for solving the Bellman equation
that underlies the DP problem, starting from the terminal cost function
approximations {jl, o d ~ }. This synergy tends to be negatively affected
when Q-factor (rather than cost) approximations are used.

1.3.3 Approximation in Policy Space

The major alternative to approximation in value space is approximation in
policy space, whereby we select the policy from a suitably restricted class
of policies, usually a parametric class of some form. In particular, we can
introduce a parametric family of policies (or approximation architecture,
as we will call it in Chapter 3),

P (Tes T, k=0,...,N—1,

where 11, is a parameter, and then estimate the parameters r; using some
type of training process or optimization; cf. Fig. 1.3.4.

Neural networks, described in Chapter 3, are often used to gener-
ate the parametric class of policies, in which case r; is the vector of
weights/parameters of the neural network. In Chapter 3, we will also dis-
cuss methods for obtaining the training data required for obtaining the
parameters rg, and we will consider several other classes of approximation
architectures.

A general scheme for parametric approximation in policy space is
to somehow obtain a training set, consisting of a large number of sample
state-control pairs (x5, u;), s = 1,..., ¢, such that for each s, u} is a “good”
control at state xj. We can then choose the parameter 74 by solving the
least squares/regression problem

q
rr:}lleHui —/lk(:vz,m)w (1.24)
s=1
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Figure 1.3.4 Schematic illustration of parametric approximation in policy space.
A policy
b (Th, 1), k=0,1,...,N—1,

from a parametric class is computed off-line based on data, and it is used to
generate the control uy = figx(xk, rx) on-line, when at state zy.

(possibly modified to add regularization).f In particular, we may determine
uj using a human or a software “expert” that can choose “near-optimal”
controls at given states, so fix is trained to match the behavior of the expert.
Methods of this type are commonly referred to as supervised learning in
artificial intelligence.

An important approach for generating the training set (zj,u}), s =
1,...,q, for the least squares training problem (1.24) is based on approx-
imation in value space. In particular, we may use a one-step lookahead
minimization of the form

’LLZ € arg min . E{gk(x27u7wk) + jk-l—l (fk(x27uuwk))}u
uEUk(wZ)

T Here || - || denotes the standard quadratic Euclidean norm. It is implicitly
assumed here (and in similar situations later) that the controls are members of
a Euclidean space (i.e., the space of finite dimensional vectors with real-valued
components) so that the distance between two controls can be measured by their
normed difference (randomized controls, i.e., probabilities that a particular action
will be used, fall in this category). Regression problems of this type arise in
the training of parametric classifiers based on data, including the use of neural
networks (see Section 3.4). Assuming a finite control space, the classifier is trained
using the data (:tc}ui)7 s =1,...,q, which are viewed as state-category pairs,
and then a state xj is classified as being of “category” fir(zk,7r). Parametric
approximation architectures, and their training through the use of classification
and regression techniques are described in Chapter 3. An important modification
is to use regularized regression where a quadratic regularization term is added
to the least squares objective. This term is a positive multiple of the squared
deviation ||r — #||* of r from some initial guess 7.
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where j;g+1 is a suitable (separately obtained) approximation in value
space. Alternatively, we may use an approximate Q-factor based mini-
mization B
S 1 S
uj, € arg ng}ir(lmz) Qr (T, ur),

where Qk is a (separately obtained) Q-factor approximation. We may view
this as approzimation in policy space built on top of approximation in value
space.

There is a significant advantage of the least squares training procedure
of Eq. (1.24), and more generally approximation in policy space: once the
parametrized policy i is obtained, the computation of controls

uk:ﬂk(xkark)u kZOu"'7N_17

during on-line operation of the system is often much easier compared with
the lookahead minimization (1.23). For this reason, one of the major uses of
approximation in policy space is to provide an approximate implementation
of a known policy (no matter how obtained) for the purpose of convenient
on-line use. On the negative side, such an implementation is less well suited
for on-line replanning.

Model-Free Approximation in Policy Space

There are also alternative optimization-based approaches for policy space
approximation. The main idea is that once we use a vector (1o, r1,...,7N-1)
to parametrize the policies 7, the expected cost Jx(zo) is parametrized as
well, and can be viewed as a function of (rg,71,...,7nv—1). We can then
optimize this cost by using a gradient-like or random search method. This
is a widely used approach for optimization in policy space, which, however,
will receive limited attention in this book (see Section 3.5, and the RL book
[Ber19al, Section 5.7).

An interesting feature of this approach is that in principle it does
not require a mathematical model of the system and the cost function; a
computer simulator (or availability of the real system for experimentation)
suffices instead. This is sometimes called a model-free implementation.
The advisability of implementations of this type, particularly when they
rely exclusively on simulation (i.e., without the use of prior mathematical
model knowledge), is a hotly debated and much contested issue; see for
example the review paper by Alamir [Ala22].

We finally note an important conceptual difference between approx-
imation in value space and approximation in policy space. The former is
primarily an on-line method (with off-line training used optionally to con-
struct cost function approximations for one-step or multistep lookahead).
The latter is primarily an off-line training method (which may be used
without modification for on-line play or optionally to provide a policy for
on-line rollout).
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1.3.4 Off-Line Training of Cost Function and Policy
Approximations

When it comes to off-line constructed approximations, a major approach is
based on the use of parametric approximation. Feature-based architectures
and neural networks are very useful within our RL context, and will be
discussed in Chapter 3, together with methods that can be used for training
them.t

Target Cost | Training Data Approximation Apﬁiﬁgﬁ)ﬁing
Function »  Architecture >
S rS ~
J(z) ( ’1‘]('17 ) Parameter r J(z,r)
s=1,...,q

Figure 1.3.5 The general structure for parametric cost approximation. We ap-
proximate the target cost function J(x) with a member from a parametric class

j(:c7 r) that depend on a parameter vector r. We use training data (:cs, J(:cs)),
s =1,...,q, and a form of optimization that aims to find a parameter 7 that

“minimizes” the size of the errors J(z°) — J(z%,7), s=1,...,q.

A general structure for parametric cost function approximation is
illustrated in Fig. 1.3.5. We have a target function J(z) that we want to
approximate with a member of a parametric class of functions J(x,r) that
depend on a parameter vector r (to simplify, we drop the time index, using
J in place of J;). To this end, we collect training data (2=, J(z%)), s =
1,...,q, which we use to determine a parameter 7 that leads to a good “fit”
between the data J(z°) and the predictions J(z,7) of the parametrized
function. This is usually done through some form of optimization that

1 The principal role of neural networks within the context of this book is to
provide the means for approximating various target functions from input-output
data. This includes cost functions and Q-factors of given policies, and optimal
cost-to-go functions and Q-factors; in this case the neural network is referred to
as a value network (sometimes the alternative term critic network is also used). In
other cases the neural network represents a policy viewed as a function from state
to control, in which case it is called a policy network (the alternative term actor
network is also used). The training methods for constructing the cost function,
Q-factor, and policy approximations themselves from data are mostly based on
optimization and regression, and will be reviewed in Chapter 3. Further DP-
oriented discussions are found in many sources, including the RL books [Ber19a],
[Ber20a], and the neuro-dynamic programming book [BeT96]. Machine learning
books, including those describing at length neural network architectures and
training are also recommended; see e.g., the recent book by Bishop and Bishop
[BiB24], and the references quoted therein.



1.4

42 Exact and Approximate Dynamic Programming Chap. 1

aims to minimize in some sense the size of the errors J(zs) — J(x%,7),
s=1,...,q.

The methodological ideas for parametric cost approximation can also
be used for approximation of a target policy p with a policy from a para-
metric class fi(x,r). The training data may be obtained, for example, from
rollout control calculations, thus enabling the construction of both value
and policy networks that can be combined for use in a perpetual rollout
scheme. However, there is an important difference: the approximate cost
values J(x,r) are real numbers, whereas the approximate policy values
f(x,r) are elements of a control space U. Thus if U consists of m dimen-
sional vectors, ji(x,r) consists of m numerical components. In this case the
parametric approximation problems for cost functions and for policies are
fairly similar, and both involve continuous space approximations.

On the other hand, the case where the control space is finite, U =
{ul,...,um}. is markedly different. In this case, for any x, f(x,r) con-
sists of one of the m possible controls w!, ..., u™. This ushers a connection
with traditional classification schemes, whereby objects = are classified as
belonging to one of the categories ul,...,u™, so that u(z) defines the cat-
egory of x, and can be viewed as a classifier. Some of the most prominent
classification schemes actually produce randomized outcomes, i.e.,  is as-
sociated with a probability distribution

{atut,r), ... alum,r)} (1.25)

which is a randomized policy in our policy approximation context; see
Fig. 1.3.6. This is done usually for reasons of algorithmic convenience,
since many optimization methods, including least squares regression, re-
quire that the optimization variables are continuous. In this case, the
randomized policy (1.25) can be converted to a nonrandomized policy us-
ing a maximization operation: associate x with the control of maximum
probability (cf. Fig. 1.3.6),

iz, r) € arg _mnax @iz, r). (1.26)

The use of classification methods for approximation in policy space will be
discussed in Chapter 3 (Section 3.4).

INFINITE HORIZON PROBLEMS - AN OVERVIEW

We will now provide an outline of infinite horizon stochastic DP with an
emphasis on its aspects that relate to our RL/approximation methods. We
will deal primarily with infinite horizon stochastic problems, where we aim
to minimize the total cost over an infinite number of stages, given by

N-1
JIr(x0) = ngnoo k_lo"Eﬁ { kz_o akg(zy, pe(zr), wk)} ; (1.27)
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Approximating
Classifier Randomized Policy
Target Policy | Training Data Assigns State z to > Max .
u(z) (2%, u(=*)) Class/Control u oo Operation
s=1,....q Parameter r Control Probabilities

i (z,r),. .., (z,T)

Figure 1.3.6 A general structure for parametric policy approximation for the
case where the control space is finite, U = {u',...,u™}, and its relation to a
classification scheme. It produces a randomized policy of the form (1.25), which is
converted to a nonrandomized policy through the maximization operation (1.26).

see Fig. 1.4.1. Here, J(z0) denotes the cost associated with an initial state
xo and a policy m = {po, p1, - - .}, and « is a scalar in the interval (0, 1]. The
functions g and f that define the cost per stage and the system equation

LTr+1 = f(fl?k7uk,wk),
do not change from one stage to the next. The stochastic disturbances,
wo, W1, . . ., have a common probability distribution P(- | g, ug).

When « is strictly less that 1, it has the meaning of a discount factor,
and its effect is that future costs matter to us less than the same costs
incurred at the present time. Among others, a discount factor guarantees
that the limit defining Jx(zo) exists and is finite (assuming that the range
of values of the stage cost g is bounded). This is a nice mathematical
property that makes discounted problems analytically and algorithmically
tractable.

Thus, by definition, the infinite horizon cost of a policy is the limit
of its finite horizon costs as the horizon tends to infinity. The three types
of problems that we will focus on are:

(a) Stochastic shortest path problems (SSP for short). Here, « = 1 but
there is a special cost-free termination state; once the system reaches
that state it remains there at no further cost. In some types of prob-
lems, the termination state may represent a goal state that we are
trying to reach at minimum cost, while in others it may be a state
that we are trying to avoid for as long as possible. We will mostly
assume a problem structure such that termination is inevitable under
all policies. Thus the horizon is in effect finite, but its length is ran-
dom and may be affected by the policy being used. A significantly
more complicated type of SSP problems, which we will discuss selec-
tively, arises when termination can be guaranteed only for a subset
of policies, which includes all optimal policies. Some common types
of SSP belong to this category, including deterministic shortest path
problems that involve graphs with cycles.

(b) Discounted problems. Here, o < 1 and there need not be a termi-
nation state. However, we will see that a discounted problem with
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Figure 1.4.1 Illustration of an infinite horizon problem. The system and cost
per stage are stationary, except for the use of a discount factor a. If a = 1, there
is typically a special cost-free termination state that we aim to reach.

a finite number of states can be readily converted to an SSP prob-
lem. This can be done by introducing an artificial termination state
to which the system moves with probability 1 — « at every state and
stage, thus making termination inevitable. As a result, algorithms
and analysis for SSP problems can be easily adapted to discounted
problems; the DP textbook [Berl7a] provides a detailed account of
this conversion, and an accessible introduction to discounted and SSP
problems with a finite number of states.

(¢) Deterministic nonnegative cost problems. Here, the disturbance wy,
takes a single known value. Equivalently, there is no disturbance in
the system equation and the cost expression, which now take the form

LTh+1 :f(xkvuk)v k:O,l,..., (128)
and
N-1
Jr(z0) = lim ok g(p, pr(zr)). (1.29)
N —o00 o

We assume further that there is a cost-free and absorbing termination
state t, and that we have

g(x,u) >0, for all z #¢t, u e U(x), (1.30)

and g(t,u) = 0 for all w € U(t). This type of structure expresses the
objective to reach or approach ¢ at minimum cost, a classical control
problem. An extensive analysis of the undiscounted version of this
problem was given in the author’s paper [Ber17b].

Discounted stochastic problems with a finite number of states [also
referred to as discounted MDP (abbreviation for Markovian Decision Prob-
lem)] are very common in the DP/RL literature, particularly because of
their benign analytical and computational nature. Moreover, there is a
widespread belief that discounted MDP can be used as a universal model,
i.e., that in practice any other kind of problem (e.g., undiscounted problems
with a termination state and/or a continuous state space) can be painlessly
converted to a discounted MDP with a discount factor that is close enough
to 1. This is questionable, however, for a number of reasons:
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(a) Deterministic models are common as well as natural in many prac-
tical contexts (including discrete optimization/integer programming
problems), so to convert them to MDP does not make sense.

(b) The conversion of a continuous-state problem to a finite-state prob-
lem through some kind of discretization involves mathematical sub-
tleties that can lead to serious practical/algorithmic complications.
In particular, the character of the optimal solution may be seriously
distorted by converting to a discounted MDP through some form of
discretization, regardless of how fine the discretization is.

(c) For some practical shortest path contexts it is essential that the termi-
nation state is ultimately reached. However, when a discount factor o
is introduced in such a problem, the character of the problem may be
fundamentally altered. In particular, the threshold for an appropriate
value of o may be very close to 1 and may be unknown in practice.
For a simple example consider a shortest path problem with states
1 and 2 plus a termination state t. From state 1 we can go to state
2 at cost 0, from state 2 we can go to either state 1 at a small cost
€ > 0 or to the termination state at a substantial cost C' > 0. The
optimal policy over an infinite horizon is to go from 1 to 2 and from 2
to t. Suppose now that we approximate the problem by introducing a
discount factor o € (0,1). Then it can be shown that if « < 1—¢/C,
it is optimal to move indefinitely around the cycle 1 — 2 — 1 — 2
and never reach ¢, while for & > 1 —¢/C the shortest path 2 — 1 — ¢
will be obtained. Thus the solution of the discounted problem varies
discontinuously with «: it changes radically at some threshold, which
in general may be unknown.

An important class of problems that we will consider in some detail
in this book is finite-state deterministic problems with a large number of
states. Finite horizon versions of these problems include challenging dis-
crete optimization problems, whose exact solution is practically impossible.
An important fact to keep in mind is that we can transform such problems
to infinite horizon SSP problems with a termination state at the end of the
horizon, so that the conceptual framework of the present section applies.
The approximate solution of discrete optimization problems by RL meth-
ods, and particularly by rollout, will be considered in Chapter 2, and has
been discussed at length in the books [Ber19a] and [Ber20a).

1.4.1 Infinite Horizon Methodology

There are several analytical and computational issues regarding our infinite
horizon problems. Many of them revolve around the relation between the
optimal cost function J* of the infinite horizon problem and the optimal
cost functions of the corresponding N-stage problems.
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In particular, let Jy(x) denote the optimal cost of the problem in-
volving N stages, initial state x, cost per stage g(z, u,w), and zero terminal
cost. This cost is generated after N iterations of the algorithm

Ji+1(x) = min Ew{g(a:,u,w)+o¢Jk(f(:17,u,w))}, k=0,1,...,

ueU(x)

(1.31)
starting from Jo(z) = 0. The algorithm (1.31) is known as the walue
iteration algorithm (VI for short). Since the infinite horizon cost of a given
policy is, by definition, the limit of the corresponding N-stage costs as
N — 00, it is natural to speculate that:

(a) The optimal infinite horizon cost is the limit of the corresponding
N-stage optimal costs as N — oo; i.e.,

J(z) = lim Jn(z) (1.32)

N—o00

for all states =x.

(b) The following equation should hold for all states z,

J(z) = ug%]i?z)Ew{g(x,u,w) +aJ” (f(a:,u,w))} (1.33)

This is obtained by taking the limit as N — oo in the VI algorithm
(1.31) using Eq. (1.32). The preceding equation, called Bellman’s

equation, is really a system of equations (one equation per state x),
which has as solution the optimal costs-to-go of all the states.

(¢) If p(x) attains the minimum in the right-hand side of the Bellman
equation (1.33) for each x, then the policy {u, i, ...} should be opti-
mal. This type of policy is called stationary, and for simplicity it is
denoted by pu.

(d) The cost function J, of a stationary policy u satisfies

Ju(x) = Ew{g(ac, (@), w) + ad,(f(z, plz), w)) }, for all x.
(1.34)

1 This is just the finite horizon DP algorithm of Section 1.3.1, except that we
have reversed the time indexing to suit our infinite horizon context. In particular,
consider the N-stages problem and let V_g(z) be the optimal cost-to-go starting
at x with k stages to go, and with terminal cost equal to 0. Applying DP, we
have for all z,

VN*k(‘r) = Igg? ) Ew{aNikg(xfuﬂ w) + VN*kJrl (f(:c7u7 w)) }7 VN(:C) =0

By defining Ji,(z) = Viv_&(z)/a™N ~F, we obtain the VI algorithm (1.31).
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We can view this as just the Bellman equation (1.33) for a different
problem, where for each z, the control constraint set U(x) consists
of just one control, namely p(z). Moreover, we expect that J, is
obtained in the limit by the VI algorithm:

Ju(z) = lim J, n(z), for all x,

N —oc0

where J,, n is the N-stage cost function of u generated by

Ty 1 (z) = Ew{g(:c,u(:c),w) + aJ#,k(f(I,u(I),w))}v (1.35)

starting from J, 0(x) = 0 or some other initial condition; cf. Egs.
(1.31)-(1.32).

All four of the preceding results can be shown to hold for finite-
state discounted problems, and also for finite-state SSP problems under
reasonable assumptions. The results also hold for infinite-state discounted
problems, provided the cost per stage function g is bounded over the set
of possible values of (z,u,w), in which case we additionally can show that
J* is the unique solution of Bellman’s equation. The VI algorithm is also
valid under these conditions, in the sense that J, — J*, even if the initial
function Jj is nonzero. The motivation for a different choice of Jy is faster
convergence to J*; generally the convergence is faster as .Jy is chosen closer
to J*. The associated mathematical proofs can be found in several sources,
e.g., [Ber12], Chapter 1, or [Ber19a], Chapter 4.1

It is important to note that for infinite horizon problems, there are
additional important algorithms that are amenable to approximation in
value space. Approximate policy iteration, Q-learning, temporal difference
methods, linear programming, and their variants are some of these; see the
RL books [Ber19a], [Ber20a]. For this reason, in the infinite horizon case,
there is a richer set of algorithmic options for approximation in value space,
despite the fact that the associated mathematical theory is more complex.
In this book, we will only discuss approximate forms and variations of the
policy iteration algorithm, which we describe next.

Policy Iteration

A major infinite horizon algorithm is policy iteration (PI for short). We
will argue that PI, together with its variations, forms the foundation for

1 For undiscounted problems and discounted problems with unbounded cost
per stage, we may still adopt the four preceding results as a working hypoth-
esis. However, we should also be aware that exceptional behavior is possible
under unfavorable circumstances, including nonuniqueness of solution of Bell-
man’s equation, and nonconvergence of the VI algorithm to J* from some initial
conditions; see the books [Ber12], [Ber22b].
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Figure 1.4.2 Schematic illustration of PI as repeated rollout. It generates a
sequence of policies, with each policy p in the sequence being the base policy that
generates the next policy i in the sequence as the corresponding rollout policy.
This rollout policy is used as the base policy in the subsequent iteration.

self-learning in RL, i.e., learning from data that is self-generated (from
the system itself as it operates) rather than from data supplied from an
external source. Figure 1.4.2 describes the method as repeated rollout, and
indicates that each of its iterations consists of two phases:

(a) Policy evaluation, which computes the cost function J, of the cur-
rent (or base) policy p. One possibility is to solve the corresponding
Bellman equation

Ju(z) = Ew{g(:zr, (@), w) + ad,(f(z, plz), w)) }, for all x,

cf. Eq. (1.34). However, the value J,(z) for any = can also be com-
puted by Monte Carlo simulation, by averaging over many randomly
generated trajectories the cost of the policy starting from .

(b) Policy improvement, which computes the “improved” (or rollout) pol-
icy i using the one-step lookahead minimization

a(x) € argugllji&) Ew{g(x,u, w) + ad, (f(x,u, w))}, for all .

We call i “improved policy” because we can generally prove that
Ju(z) < Ju(x), for all x.

This cost improvement property will be shown in Chapter 2, Section 2.7,
and can be used to show that PI produces an optimal policy in a finite
number of iterations under favorable conditions (for example for finite-
state discounted problems; see the DP books [Ber12], [Ber17a], or the RL
book [Ber19a)).

The rollout algorithm in its pure form is just a single iteration of
the PI algorithm. It starts from a given base policy p and produces the
rollout policy f. It may be viewed as approximation in value space with
one-step lookahead that uses J,, as terminal cost function approximation.
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It has the advantage that it can be applied on-line by computing the needed
values of J,(x) by simulation. By contrast, approximate forms of PI for
challenging problems, involving for example neural network training, can
only be implemented off-line.

1.4.2 Approximation in Value Space - Infinite Horizon

The approximation in value space approach that we discussed in connec-
tion with finite horizon problems can be extended in a natural way to
infinite horizon problems. Here in place of J*, we use an approximation
J, and generate at any state z, a control fi(z) by the one-step lookahead
minimaization

f(x) € argurerllji&) E{g(x,u, w) + ozj(f(x,u, w))} (1.36)

This minimization yields a stationary policy {f, fi, . ..}, with cost function
denoted Jj [i-e., Ji(z) is the total infinite horizon discounted cost obtained
when using fi starting at state x]; see Fig. 1.4.3. Note that when J=J,
the one-step lookahead policy attains the minimum in the Bellman equation
(1.33) and is expected to be optimal. This suggests that one should try to
use J as close as possible to J*, which is generally true as we will argue
later.

Naturally an important goal to strive for is that J; is close to J* in
some sense. However, for classical control problems, which involve steering
and maintaining the state near a desired reference state (e.g., problems
with a cost-free and absorbing terminal state, and positive cost for all
other states), stability of fi may be a principal objective. In this book, we
will discuss stability issues primarily for this one class of problems, and we
will consider the policy [ to be stable if J; is real-valued, i.e.,

Ja(x) < 00, for all states .

Selecting J so that /i is stable is a question of major interest for some
application contexts, such as model predictive and adaptive control, and
will be discussed in the next section within the limited context of linear
quadratic problems.

{-Step Lookahead

An important extension of one-step lookahead minimization is £-step looka-
head, whereby at a state xj we minimize the cost of the first £ > 1 stages
with the future costs approximated by a function J (see the bottom half
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Figure 1.4.3 Schematic illustration of approximation in value space with one-step
and /-step lookahead minimization for infinite horizon problems. In the former
case, the minimization yields at state z a control @, which defines the one-step
lookahead policy i via

(@) = .
In the latter case, the minimization yields a control @, policies figy1,. .., flkte—1-
The control 4y, is applied at xj while the remaining sequence figy1,. .., flg4+e—1

is discarded. The control 4y defines the ¢-step lookahead policy fi.

of Fig. 1.4.3).f This minimization yields a control 4 and a sequence
[t1y -y fbete—1- The control 4y is applied at zj, and defines the ¢-step
lookahead policy i via fi(xg) = Uk, while figt1,..., fig+e—1 are discarded.
Actually, we may view ¢-step lookahead minimization as the special case of
its one-step counterpart where the lookahead function is the optimal cost
function of an (¢ — 1)-stage DP problem with a terminal cost J(zj,¢) on
the state x40 obtained after £ — 1 stages.

The motivation for ¢-step lookahead minimization is that by increas-
ing the value of £, we may require a less accurate approzimation J to obtain
good performance. Otherwise expressed, for the same quality of cost func-
tion approximation, better performance may be obtained as ¢ becomes
larger. This will be explained visually later, using the formalism of New-
ton’s method in Section 1.5. In particular, for AlphaZero chess, long multi-
step lookahead is critical for good on-line performance. Another motivation
for multistep lookahead is to enhance the stability properties of the gener-
ated on-line policy, as we will discuss later in Section 1.5. On the other

1 On-line play with multistep lookahead minimization (and possibly trun-
cated rollout) is referred to by a number of different names in the RL literature,
such as on-line search, predictive learning, learning from prediction, etc; in the
model predictive control literature the combined interval of lookahead minimiza-
tion and truncated rollout is referred as the prediction interval.
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Figure 1.4.4 Approximation in value space with one-step lookahead for infinite
horizon problems. There are three potential areas of approximation, which can
be considered independently of each other: optimal cost approximation, expected
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value approximation, and minimization approximation.

hand, solving the multistep lookahead minimization problem, instead of
the one-step lookahead counterpart of Eq. (1.36), is more time consuming,.

The Three Approximations: Optimal Cost, Expected Value,
and Lookahead Minimization Approximations

There are three potential areas of approximation for infinite horizon prob-
lems: optimal cost approximation, expected value approximation, and min-
imization approximation; cf. Fig. 1.4.4. They are similar to their finite
horizon counterparts that we discussed in Section 1.3.2. In particular, we
have potentially:

(a)

A terminal cost approzimation J of the optimal cost function J*:
A major advantage of the infinite horizon context is that only one
approximate cost function J is needed, rather than the N functions
jl, cen jN of the N-step horizon case.

An approximation of the expected value operation: This operation can
be very time consuming. It may be simplified in various ways. For ex-
ample some of the random quantities wg, wr41, . .., Wrte—1 appearing
in the /-step lookahead minimization may be replaced by determin-
istic quantities; this is another example of the certainty equivalence
approach, which we discussed in Section 1.3.2.

A simplification of the minimization operation: For example in mul-
tiagent problems the control consists of multiple components,

w=(ul,...,um),

with each component u? chosen by a different agent/decision maker.
In this case the size of the control space can be enormous, but it
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can be simplified in ways that will be discussed later (e.g., choosing
components sequentially, one-agent-at-a-time). This will form the
core of our approach to multiagent problems; see Section 1.6.5 and
Chapter 2, Section 2.9.

We will next describe briefly various approaches for selecting the ter-
minal cost function approximation.

Constructing Terminal Cost Approximations for On-Line Play

A major issue in value space approximation is the construction of a suitable
approximate cost function J. This can be done in many different ways,
giving rise to some of the principal RL methods.

For example, J may be constructed with sophisticated off-line training
methods. Alternatively, the approximate values J () may be obtained on-
line as needed with truncated rollout, by running an off-line obtained policy
for a suitably large number of steps, starting from x, and supplementing it
with a suitable, perhaps primitive, terminal cost approximation.

For orientation purposes, let us describe briefly four broad types of
approximation. We will return to these approaches later, and we also refer
to the RL and approximate DP literature for more detailed discussions.

(a) Off-line problem approzimation: Here the function J is computed off-
line as the optimal or nearly optimal cost function of a simplified op-
timization problem, which is more convenient for computation. Sim-
plifications may include exploiting decomposable structure, reducing
the size of the state space, neglecting some of the constraints, and
ignoring various types of uncertainties. For example we may con-
sider using as J the cost function of a related deterministic problem,
obtained through some form of certainty equivalence approximation,
thus allowing computation of J by gradient-based optimal control
methods or shortest path-type methods.

A major type of problem approximation method is aggregation, de-
scribed in Section 3.6, and in the books [Ber12], [Ber19a] and papers
[Ber18al, [Berl8b]. Aggregation provides a systematic procedure to
simplify a given problem by grouping states together into a relatively
small number of subsets, called aggregate states. The optimal cost
function of the simpler aggregate problem is computed by exact DP
methods, possibly involving the use of simulation. This cost func-
tion is then used to provide an approximation J to the optimal cost
function J* of the original problem, using some form of interpolation.

(b) On-line simulation: This possibility arises in rollout algorithms for
stochastic problems, where we use Monte-Carlo simulation and some
suboptimal policy p (the base policy) to compute (whenever needed)
values J(z) that are exactly or approximately equal to Ju(z). The
policy 1 may be obtained by any method, e.g., one based on heuris-
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tic reasoning (such as in the case of the traveling salesman Example
1.2.3), or off-line training based on a more principled approach, such
as approximate policy iteration or approximation in policy space.
Note that while simulation is time-consuming, it is uniquely well-
suited for the use of parallel computation. Moreover, it can be sim-
plified through the use of certainty equivalence approximations.

(¢) On-line approximate optimization. This approach involves the solu-
tion of a suitably constructed shorter horizon version of the problem,
with a simple terminal cost approximation. It can be viewed as ei-
ther approximation in value space with multistep lookahead, or as a

form of rollout algorithm. It is often used in model predictive control
(MPC).

(d) Parametric cost approximation, where J is obtained from a given
parametric class of functions J(z, 7“), where r is a parameter vector,
selected by a suitable algorithm. The parametric class typically in-
volves prominent characteristics of x called features, which can be
obtained either through insight into the problem at hand, or by using
training data and some form of neural network (see Chapter 3).

Such methods include approximate forms of PI, as discussed in Sec-
tion 1.1 in connection with chess and backgammon. The policy eval-
uation portion of the PI algorithm can be done by approximating
the cost function of the current policy using an approximation ar-
chitecture such as a neural network (see Chapter 3). It can also be
done with stochastic iterative algorithms such as TD()\), LSPE()),
and LSTD()), which are described in the DP book [Ber12] and the
RL book [Berl9a]. These methods are somewhat peripheral to our
course, and will not be discussed at any length. We note, however,
that approximate PI methods do not just yield a parametric approx-
imate cost function J(z,r), but also a suboptimal policy, which can
be improved on-line by using (possibly truncated) rollout.

Aside from approximate PI, parametric approximate cost functions
J(x,r) may be obtained off-line with methods such as Q-learning, lin-
ear programming, and aggregation methods, which are also discussed
in the books [Ber12] and [Ber19a].

Let us also mention that for problems with special structure, J may
be chosen so that the one-step lookahead minimization (1.36) is facilitated.
In fact, under favorable circumstances, the lookahead minimization may be
carried out in closed form. An example is when the system is nonlinear,
but the control enters linearly in the system equation and quadratically
in the cost function, while the terminal cost approximation is quadratic.
Then the one-step lookahead minimization can be carried out analytically,
because it involves a function that is quadratic in u.
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From Off-Line Training to On-Line Play

Generally off-line training will produce either just a cost approximation
(as in the case of TD-Gammon), or just a policy (as for example by some
approximation in policy space/policy gradient approach), or both (as in
the case of AlphaZero). We have already discussed in this section one-step
lookahead and multistep lookahead schemes to implement on-line approx-
imation in value space using J; cf. Fig. 1.4.3. Let us now consider some
additional possibilities, which involve the use of a policy p that has been
obtained off-line (possibly in addition to a terminal cost approximation).
Here are some of the main possibilities:

(a) Given a policy p that has been obtained off-line, we may use as termi-
nal cost approximation J the cost function J,. of the policy. For the
case of one-step lookahead, this requires a policy evaluation opera-
tion, and can be done on-line, by computing (possibly by simulation)
just the values of

E{J#(f(xk,wm wk))}

that are needed [cf. Eq. (1.36)]. For the case of ¢-step lookahead, the
values

E{Ju(ilfkw)}

for all states x4, that are reachable in ¢ steps starting from xj, are
needed. This is the simplest form of rollout, and only requires the
off-line construction of the policy .

(b) Given a terminal cost approzimation J that has been obtained off-
line, we may use it on-line to compute fast when needed the controls of
a corresponding one-step or multistep lookahead policy ji. The policy
£ can in turn be used for rollout as in (a) above. In a truncated
variation of this scheme, we may also use J to approximate the tail
end of the rollout process (an example of this is the rollout-based

TD-Gammon algorithm).

(¢) Given a policy p and a terminal cost approximation J, we may use
them together in a truncated rollout scheme, whereby the tail end of
the rollout with p is approximated using the cost approximation J.
This is similar to the truncated rollout scheme noted in (b) above,
except that the policy p is computed off-line rather than on-line using
J and one-step or multistep lookahead.

The preceding three possibilities are the principal ones for using the
results of off-line training within on-line play schemes. Naturally, there are
variations where additional information is computed off-line to facilitate
and/or expedite the on-line play algorithm. As an example, in MPC, in
addition to a terminal cost approximation, a target tube may need to be
computed off-line in order to guarantee that some state constraints can
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be satisfied on-line; see the discussion of MPC in Section 1.6.7. Other
examples of this type will be noted in the context of specific applications.

Finally, let us note that while we have emphasized approximation
in value space with cost function approximation, our discussion applies to
Q-factor approximation, involving functions

Qz,u) ~ E{g(x,u,w) —l—aJ*(f(:v,u,w))}.

The corresponding one-step lookahead scheme has the form

i(xr) € arg min Eqg(x,u,w)+a min z,u,w),u’) ey (1.37
ple) € org min E{g(ruww)ta  min - Q(f(ruw)w)}; (137)

cf. Eq. (1.36). The second term on the right in the above equation repre-
sents the cost function approximation

J(f(x,u,w)): i Q(f(:v,u,w),u’).

min
u' €U(f(z,u,w))

The use of Q-factors is common in the “model-free” case where a
computer simulator is used to generate samples of w, and corresponding
values of g and f. Then, having obtained Q through off-line training, the
one-step lookahead minimization in Eq. (1.37) must be performed on-line
with the use of the simulator.

1.4.3 Understanding Approximation in Value Space

We will now discuss some of our aims as we try to get insight into the
process of approximation in value space. Clearly, it makes sense to approx-
imate J* with a function J that is as close as possible to J*. However,
we should also try to understand quantitatively the relation between J
and Jj, the cost function of the resulting one-step lookahead (or multistep
lookahead) policy fi. Interesting questions in this regard are the following:

(a) How is the quality of the lookahead policy fi affected by the quality of
the off-line training? A related question is how much should we care
about improving J through a longer and more sophisticated training
process, for a given approximation architecture? A fundamental fact
that provides a lot of insight in this respect is that Jj is the result of a
step of Newton’s method that starts at J and is applied to the Bellman
Eq. (1.83). This will be the focus of our discussion in the next section,
and has been a major point in the narrative of the author’s books,
[Ber20a] and [Ber22a).

A related fact is that in approximation in value space with multistep
lookahead, Jj; is the result of a step of Newton’s method that starts at
the function obtained by applying multiple value iterations to J.
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(b) How do simplifications in the multistep lookahead implementation af-
fect J;? The Newton step interpretation of approximation in value
space leads to an important insight into the special character of the
initial step of the multistep lookahead. In particular, it is only the
first step that acts as the Newton step, and needs to be implemented
with precision. The subsequent steps are value iterations, which only
serve to enhance the quality of the starting point of the Newton step,
and hence their precise implementation is not critical.

This idea suggests that simplifications of the lookahead steps after the
first can be implemented with relatively small (if any) performance
loss for the multistep lookahead policy. Important examples of such
simplifications are the use of certainty equivalence (Sections 1.6.7,
2.7.2, 2.8.3), and forms of pruning of the lookahead tree (Section
2.4). 1In practical terms, simplifications after the first step of the
multistep lookahead can save a lot of on-line computation, which can
be fruitfully invested in extending the length of the lookahead.

(¢) When is fi stable? The question of stability is very important in
many control applications where the objective is to keep the state
near some reference point or trajectory. Indeed, in such applications,
stability is the dominant concern, and optimality is secondary by
comparison. Among others, here we are interested to characterize
the set of terminal cost approximations J that lead to a stable [

(d) How does the length of lookahead minimization or the length of the
truncated rollout affect the stability and quality of the multistep looka-
head policy pn? While it is generally true that the length of lookahead
has a beneficial effect on quality, it turns out that it also has a ben-
eficial effect on the stability properties of the multistep lookahead
policy, and we are interested in the mechanism by which this occurs.

In what follows we will be keeping in mind these questions. In partic-
ular, in the next section, we will discuss them in the context of the simple
and convenient linear quadratic problem. Our conclusions, however, hold
within a far more general context with the aid of the abstract DP formal-
ism; see the author’s books [Ber20a] and [Ber22a] for a broader presentation
and analysis, which address these questions in greater detail and generality.

NEWTON’S METHOD - LINEAR QUADRATIC PROBLEMS

We will now aim to understand the character of the Bellman equation,
approximation in value space, and the VI and PI algorithms within the
context of an important deterministic problem. This is the classical conti-
nuous-spaces problem where the system is linear, with no control con-
straints, and the cost function is nonnegative quadratic. While this prob-
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lem can be solved analytically, it provides a uniquely insightful context for
understanding visually the Bellman equation and its algorithmic solution,
both exactly and approximately.

In its general form, the problem deals with the system

Tpy1 = Az + Buy,

where xp and uy, are elements of the Euclidean spaces " and 2™, respec-
tively, A is an n X n matrix, and B is an n X m matrix. It is assumed
that there are no control constraints. The cost per stage is quadratic of
the form

g(z,u) = 2'Qx + v Ru,

where @@ and R are positive definite symmetric matrices of dimensions
n x n and m x m, respectively (all finite-dimensional vectors in this work
are viewed as column vectors, and a prime denotes transposition). The
analysis of this problem is well known and is given with proofs in several
control theory texts, including the author’s DP books [Ber17a] and [Ber12].

In what follows, we will focus for simplicity only on the one-dimensional
version of the problem, where the system has the form

Tpt1 = axg + buy; (1.38)

cf. Example 1.3.1. Here the state x; and the control uy are scalars, and
the coefficients a and b are also scalars, with b # 0. The cost function is
undiscounted and has the form

oo

> (g3 +ru), (1.39)
k=0

where ¢ and r are positive scalars. The one-dimensional case allows a
convenient and insightful analysis of the algorithmic issues that are cen-
tral for our purposes. This analysis generalizes to multidimensional linear
quadratic problems and beyond, but requires a more demanding mathe-
matical treatment.

The Riccati Equation and its Justification

The analytical results for our problem may be obtained by taking the limit
in the results derived in the finite horizon Example 1.3.1, as the horizon
length tends to infinity. In particular, we can show that the optimal cost
function is expected to be quadratic of the form

J*(z) = K*a2, (1.40)
where the scalar K* solves the equation

K = F(K), (1.41)
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with F' defined by
a?rK

F(K)= ——— . 1.42
(K) =~ Tk T4 (1.42)

This is the limiting form of Eq. (1.19).

Moreover, the optimal policy is linear of the form
p*(x) = L*x, (1.43)
where L* is the scalar given by
abK*

L*= ———. 1.44
r+b2K* (1.44)

To justify Eqs. (1.41)-(1.44), we show that J* as given by Eq. (1.40),
satisfies the Bellman equation

J(x) = mi 2 24 J b 1.45
() = min {ga? + ru? + J(az + bu) }, (1.45)
and that p*(z), as given by Eqgs. (1.43)-(1.44), attains the minimum above
for every x when J = J*. Indeed for any quadratic cost function J(z) =
K22 with K > 0, the minimization in Bellman’s equation (1.45) is written
as
i 2 24+ K bu)?}. 1.46
inelg{qx + ru2 + K (az + bu)?} (1.46)

Thus it involves minimization of a positive definite quadratic in u and can
be done analytically. By setting to 0 the derivative with respect to u of the
expression in braces in Eq. (1.46), we obtain

0 = 2ru + 2bK (ax + bu),

so the minimizing control and corresponding policy are given by

pi(z) = Lgx, (1.47)
where LK
a

By substituting this control, the minimized expression (1.46) takes the form
(q +rL3 + K(a+ bLK)2>x2.

After straightforward algebra, using Eq. (1.48) for L, it can be verified

that this expression is written as F(K)xz2, with F given by Eq. (1.42).

Thus when J(z) = Kz2, the Bellman equation (1.45) takes the form

Kax?2 = F(K)a?
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or equivalently K = F(K) [cf. Eq. (1.41)].
In conclusion, when restricted to quadratic functions J(z) = Ka?2
with K > 0, the Bellman equation (1.45) is equivalent to the equation

a’rK n
r+ 2K e

We refer to this equation as the Riccati equationt and to the function F
as the Riccati operator.I Moreover, the policy corresponding to K*, as
per Eqgs. (1.47)-(1.48), attains the minimum in Bellman’s equation, and is
given by Egs. (1.43)-(1.44).

The Riccati equation can be visualized and solved graphically as il-
lustrated in Fig. 1.5.1. As shown in the figure, the quadratic coefficient
K* that corresponds to the optimal cost function J* [cf. Eq. (1.40)] is the
unique solution of the Riccati equation K = F(K) within the nonnegative
real line.

K=F(K)= (1.49)

The Riccati Equation for a Stable Linear Policy

We can also characterize the cost function of a policy p that is linear of the
form p(z) = Lz, and is also stable, in the sense that the scalar L satisfies
|a + bL| < 1, so that the corresponding closed-loop system

Zg+1 = (@ + bL)xy,

is stable (its state zj converges to 0 as k — 00). In particular, we can show
that its cost function has the form

Ju(z) = Kpa?,

1 This is an algebraic form of the Riccati differential equation, which was in-
vented in its one-dimensional form by count Jacopo Riccati in the 1700s, and has
played an important role in control theory. It has been studied extensively in its
differential and difference matrix versions; see the book by Lancaster and Rod-
man [LR95], and the paper collection by Bittanti, Laub, and Willems [BLW91],
which also includes a historical account by Bittanti [Bit91] of Riccati’s remarkable
life and accomplishments.

I The Riccati operator is a special case of the Bellman operator, denoted by
T, which transforms a function J into the right side of Bellman’s equation:

(TJI)(x) = ugg?z) Ew{g(:c,u, w) + aJ(f(:c,u, w)) }, for all .
Thus the Bellman operator T transforms a function J of z into another func-
tion T'J also of x. Bellman operators allow a succinct abstract description of
the problem’s data, and are fundamental in the theory of abstract DP (see the
author’s monographs [Ber22a] and [Ber22b]). We may view the Riccati operator
as the restriction of the Bellman operator to the subspace of quadratic functions
of x.
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Figure 1.5.1 Graphical construction of the solutions of the Riccati equation
(1.41)-(1.42) for the linear quadratic problem. The optimal cost function is
J*(x) = K*z2, where the scalar K* solves the fixed point equation K = F(K),
with F' being the Riccati operator given by

a’rK

F(K) = r+b2K

+4q.

Note that F' is concave and monotonically increasing in the interval (—r /b2, 00)
and “flattens out” as K — oo, as shown in the figure. The quadratic Riccati
equation K = F(K) also has another solution, denoted by K, which is negative
and therefore of no interest.

where K, solves the equation
K = FL(K), (1.50)
with F, defined by
Fr(K) = (a+bL)2K + q + rL2. (1.51)

This equation is called the Riccati equation for the stable policy p(x) = L.
It is illustrated in Fig. 1.5.2, and it is linear, with linear coefficient (a+bL)?2
that is strictly less than 1. Hence the line that represents the graph of Fp,
intersects the 45-degree line at a unique point, which defines the quadratic
cost coefficient K.

The Riccati equation (1.50)-(1.51) for pu(xz) = Lx may be justified by
verifying that it is in fact the Bellman equation for p,

J(x) = (¢ +rL2)a2 + J((a+bL)z),
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Figure 1.5.2 Illustration of the construction of the cost function of a linear policy
w(x) = Lz, which is stable, i.e., |a + bL| < 1. The cost function J,(z) has the
form

Ju(x) = Kpz?,

with K, obtained as the unique solution of the linear equation K = F,(K), where
Fr(K) = (a+bL)?K +q+rL?,

is the Riccati equation operator corresponding to u(z) = Lz. If p is not stable,
ie, |a+ bL| > 1, we have Jy(z) = oo for all z # 0, but the equation has
K = Fr,(K) still has a solution that is of no interest within our context.

[cf. Eq. (1.34)], restricted to quadratic functions of the form J(x) = Ka2.

We note, however, that J,(z) = Krz? is the solution of the Riccati
equation (1.50)-(1.51) only when p(z) = Lx is stable. If y is not stable,
ie., |a+bL| > 1, then (since ¢ > 0 and r > 0) we have J,(z) = oo for
all © # 0. Then, the Riccati equation (1.50)-(1.51) is still defined, but its
solution is negative and is of no interest within our context.

Value Iteration

The VI algorithm for our linear quadratic problem is given by

Jrt1(x) = Lnel% {q2? + ru + Jy(az + bu) }.

When J, is quadratic of the form Ji(x) = Kia? with Ky > 0, it can be seen
that the VI iterate Jy11 is also quadratic of the form Ji41(z) = Kgi122,
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Figure 1.5.3 Graphical illustration of value iteration for the linear quadratic
problem. It has the form Kj4; = F(K}), where F is the Riccati operator,

a?rK
P = ek

+4q.
The algorithm converges to K* starting from any Ky > 0.

where

K1 = F(Ky),

with F' being the Riccati operator of Eq. (1.49). The algorithm is illustrated
in Fig. 1.5.3. As can be seen from the figure, when starting from any
Koy > 0, the algorithm generates a sequence {K}} of nonnegative scalars
that converges to K*.

1.5.1 Visualizing Approximation in Value Space - Region of
Stability

The use of Riccati equations allows insightful visualization of approxi-
mation in value space. This visualization, although specialized to linear
quadratic problems, is consistent with related visualizations for more gen-
eral infinite horizon problems; this is a recurring theme in what follows. In
particular, in the books [Ber20a] and [Ber22a], Bellman operators, which
define the Bellman equations, are used in place of Riccati operators, which
define the Riccati equations.
In summary, we will aim to show that:

a) Approximation in value space with one-step lookahead can be viewe
A imation i 1 ith lookahead be viewed
as a Newton step for solving the Bellman equation, and maps the
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Figure 1.5.4 Illustration of the interpretation of approximation in value space
with one-step lookahead as a Newton step that maps J to the cost function Jj of
the one-step lookahead policy.

terminal cost function approximation J to the cost function Jp of the
one-step lookahead policy; see Fig. 1.5.4.

(b) Approximation in value space with multistep lookahead and trun-
cated rollout can be viewed as a Newton step for solving the Bellman
equation, and maps the result of multiple VI iterations starting with
the terminal cost function approximation J to the cost function Ji
of the multistep lookahead policy; see Fig. 1.5.5.

Our derivation will be given for the one-dimensional linear quadratic prob-
lem, but applies far more generally. The reason is that the Bellman equa-
tion is valid universally in DP, and the corresponding Bellman operator
has a concavity property that is well-suited for the application of Newton’s
method; see the books [Ber20a] and [Ber22a], where the connection of ap-
proximation in value space with Newton’s method was first developed in
detail.

Let us consider one-step lookahead minimization with any terminal
cost function approximation of the form J(z) = K22, where K > 0. We
have derived the one-step lookahead policy px () in Egs. (1.47)-(1.48), by
minimizing the right side of Bellman’s equation when J(z) = Ka2:

- 2 2 2
Znelg{qx + ru2 + K (az + bu)?}.

We can break this minimization into a sequence of two minimizations as
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Figure 1.5.5 Illustration of the interpretation of approximation in value space
with multistep lookahead and truncated rollout as a Newton step, which maps
the result of multiple VI iterations starting with the terminal cost function ap-
proximation J to the cost function Jp of the multistep lookahead policy.

follows:

F(K)z? = min mi 24ru2+ K bu)?2} = mi bL+K bL)2}x2.
(K)x anelgun:nLr;{qx +ru2+K (az+bu)? } Enel%{q—l— +K(a+bL)?}x

From this equation, it follows that

F(K) = min Fr(K), (1.52)

where the function Fr,(K) is defined by
Fr(K)=(a+bL)2K + q+ bL. (1.53)

Figure 1.5.6 illustrates the relation (1.52)-(1.53), and shows how the
graph of the Riccati operator F' can be obtained as the lower envelope of
the linear operators Fr,, as L ranges over the real numbers.

One-Step Lookahead Minimization and Newton’s Method

Let us now fix the terminal cost function approximation to some Ka2,
where K > 0, and consider the corresponding one-step lookahead policy,
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Figure 1.5.6 Illustration of how the graph of the Riccati operator F' can be
obtained as the lower envelope of the linear operators

Fr(K) = (a+bL)?K +q+bL,
as L ranges over the real numbers. We have

F(K)=gleigFL(K);

cf. Eq. (1.52). Moreover, for any fixed K, the scalar L that attains the minimum
is given by ~

abK
r+ 02K

L=-

[cf. Eq. (1.48)], and is such that the line corresponding to the graph of F; is
tangent to the graph of F at K, as shown in the figure.

which we will denote by fi. Figure 1.5.7 illustrates the corresponding linear
function F;, and shows that its graph is a tangent line to the graph of F
at the point K [cf. Fig. 1.5.6 and Eq. (1.53)].

Thus the function F; can be viewed as a linearization of F' at the point
K, and defines a linearized problem: to find a solution of the equation

K = F;(K) = q+bL2 + K(a +bL)2.

The important point now is that the solution of this equation, denoted
Kj, is the same as the one obtained from a single iteration of Newton’s
method for solving the Riccati equation, starting from the point K. This is
illustrated in Fig. 1.5.7, and is also justified analytically in Exercise 1.7.
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Figure 1.5.7 Illustration of approximation in value space with one-step lookahead
for the linear quadratic problem. Given a terminal cost approximation J = Kxz?,
we compute the corresponding linear policy fi(z) = Lz, where

abK

L=-— _
r+b2K

and the corresponding cost function K sz, using the Newton step shown.

To explain this connection, we note that the classical form of Newton’s
method for solving a fixed point problem of the form y = T(y), where y
is an n-dimensional vector, operates as follows: At the current iterate yy,
we linearize T and find the solution yx41 of the corresponding linear fixed
point problem. Assuming T is differentiable, the linearization is obtained
by using a first order Taylor expansion:

T (y
Yrr1 = T(yr) + %(ykﬂ —Yk)s

where 0T (yi) /Oy is the n x n Jacobian matrix of T evaluated at the vector
Yk, as indicated in Fig. 1.5.7.

The most commonly given convergence rate property of Newton’s
method is quadratic convergence. It states that near the solution y*, we
have

lyesr = y*[l = O(llye — v*112),
where || - || is the Euclidean norm, and holds assuming the Jacobian ma-

trix exists and is Lipschitz continuous (see [Berl6], Section 1.4). There
are extensions of Newton’s method that are based on solving a linearized
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Figure 1.5.8 Illustration of approximation in value space with two-step looka-
head for the linear quadratic problem. Starting with a terminal cost approxima-
tion j(:c) = K2, we obtain K using a single value iteration, thereby enhancing
the starting point of the Newton step. We then compute the corresponding linear
policy fi(z) = Lz, where

AL
T‘+b2K1

and the corresponding cost function KL:z:27 using the Newton step shown. The
figure shows that for any K > 0, the corresponding ¢-step lookahead policy will
be stable for all £ larger than some threshold.

system at the current iterate, but relax the differentiability requirement to
piecewise differentiability, and/or component concavity, while maintaining
the either a quadratic or a similarly fast superlinear convergence property
of the method; see the monograph [Ber22a] (Appendix A) and the paper
[Ber22c], which also provide a convergence analysis.

Note also that if the one-step lookahead policy is stable, i.e., |a4+bL| <
1, then K; is the quadratic cost coefficient of its cost function, i.e.,

Ju(x) = Kja2.

The reason is that J; solves the Bellman equation for policy fi. On the
other hand, if & is not stable, then in view of the positive definite quadratic
cost per stage, we have Jj(z) = oo for all = # 0.

Multistep Lookahead

In the case of ¢-step lookahead minimization, a similar Newton step inter-
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Riccati Equation Formulas for One-Dimensional Problems
Riccati equation for minimization [cf. Egs. (1.41) and (1.42)]

a?rK

Riccati equation for a linear policy u(z) = Lz

K = Fi(K), Fr(K) = (a+bL)2K + q + rL2.

Cost coefficient K of a stable linear policy u(z) = Lz

q+rL?

Kp=——""—#+—.
LT T T (atbL)2

Linear coefficient Lx of the one-step lookahead linear policy
px for K in the region of stability [cf. Eq. (1.48)]

abK

LK = argmgnFL(K) = —m

Quadratic cost coefficient K of a one-step lookahead linear
policy px for K in the region of stability

Obtained as the solution of the linearized Riccati equation

K = Fr . (K),

or equivalently by a Newton iteration starting from K.

pretation is possible. Instead of linearizing F' at K, we linearize at

Koy = Ft-1(K),

i.e., the result of £ — 1 successive applications of F' starting with K. Each
application of F' corresponds to a value iteration. Thus the effective starting

point for the Newton step is F*~1(K). Figure 1.5.8 depicts the case £ = 2.
Region of Stability

It is also useful to define the region of stability as the set of K > 0 such
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Figure 1.5.9 Illustration of the region of stability, i.e., the set of K > 0 such
that the one-step lookahead policy px is stable. This is also the set of initial
conditions for which Newton’s method converges to K* asymptotically.

that
|a + bLK| <1,

where Ly is the linear coefficient of the one-step lookahead policy corre-
sponding to K; cf. Eq. (1.48). The region of stability may also be viewed
as the region of convergence of Newton’s method. It is the set of start-
ing points K for which Newton’s method, applied to the Riccati equation
F = F(K), converges to K* asymptotically, and with a quadratic conver-
gence rate (asymptotically as K — K*). Note that for our one-dimensional
problem, the region of stability is the interval (Kg, 00) that is characterized
by the single point Ks where F' has derivative equal to 1; see Fig. 1.5.9.

For multidimensional problems, the region of stability may not be
characterized as easily. Still, however, it is generally true that the region
of stability is enlarged as the length of the lookahead increases.

Indeed, with increased lookahead, the effective starting point

F-1(K)

is pushed more and more within the region of stability. In particular, for
any given K > 0, the corresponding £-step lookahead policy will be stable
for all £ larger than some threshold; see Fig. 1.5.8. The book [Ber22al,
Section 3.3, contains a broader discussion of the region of stability and the
role of multistep lookahead in enhancing it; see also Exercise 1.8.
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Newton Step Interpretation of Approximation in Value Space
in General Infinite Horizon Problems

The interpretation of approximation in value space as a Newton step, and
related notions of stability that we have discussed in this section admit a
broad generalization to the infinite horizon problems that we consider in
this book and beyond. The key fact in this respect is that our DP problem
formulation allows arbitrary state and control spaces, both discrete and
continuous, and can be extended even further to general abstract models
with a DP structure; see the abstract DP book [Ber22b].

Within this context, the Riccati operator is replaced by an abstract
Bellman operator, and valuable insight can be obtained from graphical
interpretations of the Bellman equation, the VI and PI algorithms, one-
step and multistep approximation in value space, the region of stability,
and exceptional behavior; see the book [Ber22a] for an extensive discussion.
Naturally, the graphical interpretations and visualizations are limited to
one dimension. However, they provide insight, and motivate conjectures
and mathematical analysis, much of which is given in the book [Ber20a].

The Importance of the First Step in Multistep Lookahead

The Newton step interpretation of approximation in value space leads to
an important insight into the special character of the initial step in ¢-step
lookahead implementations. In particular, it is only the first step that acts
as the Newton step, and needs to be implemented with precision; cf. Fig.
1.5.5. The subsequent £ — 1 steps are a sequence of value iterations starting
with J, and only serve to enhance the quality of the starting point of the
Newton step. As a result, their precise implementation is not critical, a
major point in the narrative of the author’s book [Ber22a].

This idea suggests that we can simplify (within reason) the lookahead
steps after the first with small (if any) performance loss for the multistep
lookahead policy. An important example of such a simplification is the use
of certainty equivalence, which will be discussed later in various contexts
(Sections 1.6.7, 2.7.2, 2.8.3). Other possibilities include the “pruning” of
the lookahead tree after the first step; see Section 2.4. In practical terms,
simplifications after the first step of the multistep lookahead can save a lot
of on-line computation, which can be fruitfully invested in extending the
length of the lookahead. This insight is supported by substantial computa-
tional experimentation, starting with the paper by Bertsekas and Castanon
[BeC98], which verified the beneficial effect of using certainty equivalence
after the first step.

1.5.2 Rollout and Policy Iteration

We will now consider the rollout algorithm for the linear quadratic problem,
starting from a linear stable base policy u. It generates the rollout policy
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Figure 1.5.10 Illustration of the rollout algorithm for the linear quadratic prob-
lem. Starting from a linear stable base policy p, it generates a stable rollout
policy fi. The quadratic cost coefficient of i is obtained from the quadratic cost
coefficient of p with a Newton step for solving the Riccati equation.

i1 by using a policy improvement operation, which by definition, yields the
one-step lookahead policy that corresponds to terminal cost approximation
J = Jy,. Figure 1.5.10 illustrates the rollout algorithm. It can be seen from
the figure that the rollout policy is in fact an improved policy, in the sense
that Ju(xz) < Ju(x) for all z. Among others, this implies that the rollout
policy is stable, since p is assumed stable so that J,(x) < oo for all x.

Since the rollout policy is a one-step lookahead policy, it can also be
described using the formulas that we developed earlier in this section. In
particular, let the base policy have the form

po(z) = Loz,

where Lg is a scalar. We require that the base policy must be stable, i.e.,
|a+bLo| < 1. From our earlier calculations, we have that the cost function
of u0 is

Jo(z) = Koz2, (1.54)
where 2
q+rly

Kop=—"—"—. 1.55

T 1= (a+bLo)? (1.55)

Moreover, the rollout policy p! has the form pl(z) = L1z, where
bK
L= -0 (1.56)

T IR,
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cf. Eqgs. (1.47)-(1.48).

The PI algorithm is simply the repeated application of nontruncated
rollout, and generates a sequence of stable linear policies {u*}. By repli-
cating our earlier calculations, we see that the policies have the form

pk(z) = Lz, k=0,1,...,

where Ly, is generated by the iteration

I _ aka
k+1 — "+ b2Kk7
with K} given by
O i
1—(a+ bLk)2

[cf. Egs. (1.55)-(1.56)].
The corresponding cost function sequence is

J () = Kpa?;
cf. Eq. (1.54). Part of the classical linear quadratic theory is that J,k
converges to the optimal cost function J*, while the generated sequence of
linear policies {u*k}, where p*(z) = Lix, converges to the optimal pol-
icy, assuming that the initial policy is linear and stable. The conver-
gence rate of the sequence {K}} is quadratic, as indicated earlier. This
result was proved by Kleinman [Kle68] for the continuous-time multidimen-
sional version of the linear quadratic problem, and it was extended later
to more general problems; see the references given in the books [Ber20a]
and [Ber22a] (Kleinman gives credit to Bellman and Kalaba [BeK65] for
the one-dimensional version of his results).

Truncated Rollout

An m-step truncated rollout scheme with a stable linear base policy p(z) =
Lz, one-step lookahead minimization, and terminal cost approximation
J(z) = Ka2 is geometrically interpreted as in Fig. 1.5.11. The truncated
rollout policy f is obtained by starting at K, executing m VI steps using
u, followed by a Newton step for solving the Riccati equation.

We mentioned some interesting performance issues in our discussion

of truncated rollout in Section 1.1. In particular we noted that:

(a) Lookahead by rollout may be an economic substitute for lookahead by
minimization: it may achieve a similar performance for the truncated
rollout policy at a much reduced computational cost.
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Figure 1.5.11 Illustration of truncated rollout with one-step lookahead mini-
mization, a stable base policy p(z) = Lz, and terminal cost approximation K for
the linear quadratic problem. In this figure the number of rollout steps is m = 4.

(b) Lookahead by rollout with a stable policy has a beneficial effect on
the stability properties of the lookahead policy.

These statements are difficult to establish analytically in some generality.
However, they can be intuitively understood in the context with our one-
dimensional linear quadratic problem, using geometrical constructions like
the one of Fig. 1.5.11. They are also consistent with the results of compu-
tational experimentation. We refer to the monograph [Ber22a] for further
discussion.

Double Newton Step - Rollout on Top of Approximation in
Value Space

Given a cost function approximation K that defines the policy f(z) = Lz,
it is possible to consider rollout that uses ji as a base policy. This can be
viewed as rollout built on top of approximation in value space, and is
referred to as a double Newton step; it is a Newton step that starts from
the result of the Newton step that starts from K (see Fig. 1.5.12). The
double Newton step is much more powerful than approximation in value
space with two-step lookahead starting from K, which amounts to a value
iteration followed by a Newton step. Moreover, the idea of a double Newton
step extends to general infinite horizon problems.

Note that it is also possible to consider variants of rollout on top
of approximation in value space, such as truncated, simplified, and multi-
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Figure 1.5.12 Illustration of a double Newton step. Here, a base policy p is
obtained by one-step lookahead using cost function approximation j(x) = Kaz2.
The cost function of the corresponding rollout policy fi is obtained with two
successive Newton steps starting from K.

step lookahead versions. An important example of the truncated version is
the 1996 TD-Gammon architecture [TeG96], where the base policy is ob-
tained through approximation in value space with a terminal cost function
approximation that is constructed off-line using a neural network.

1.5.3 Local and Global Error Bounds for Approximation
in Value Space

In approximation in value space, an important analytical issue is to quantify
the level of suboptimality of the one-step or multistep lookahead policy
obtained. It is thus important to understand the character of the critical
mapping between the approximation error J — J* and the performance
error J; — J*, where as earlier, J; is the cost function of the lookahead
policy jz and J* is the optimal cost function.

There is a classical one-step lookahead error bound for the case of an
a-discounted problem with finite state space X, which has the form

2c
l1—«

[Jp — J*| < 1T — J*|I; (1.57)

where || - || denotes the maximum norm,

15 =l = max [ Jae) = ()], 1 = T = max |7 (@) = " (a);
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Figure 1.5.13 Illustration of the linear error bound (1.58) for ¢-step lookahead
approximation in value space. For £ = 1, we obtain the one-step bound (1.57).

see e.g., [Ber19a], Prop. 5.1.1. The bound (1.57) predicts a linear relation
between the size of the approximation error ||.J — J*|| and the performance
error || Jz—J"||. For a generalization, we may view ¢-step lookahead as one-
step lookahead with a terminal cost function T¢=1J, i.e., J transformed by
£ — 1 value iterations. We then obtain the /-step bound

2at

11—«

1o = 7| < 1] = 7. (1.58)
The linear bounds (1.57)-(1.58) are illustrated in Fig. 1.5.13, and apply
beyond the a-discounted case, to problems where the Bellman equation
involves a contraction mapping over a subset of functions; see the RL book
[Ber19a], Section 5.9.1, or the abstract DP book [Ber22b], Section 2.2.
Unfortunately, the linear error bounds are very conservative, and do
not reflect practical reality, even qualitatively so. The main reason is that
they are global error bounds, i.e., they hold for all J, even the worst possible.
In practice, J is often chosen sufficiently close to J*, so that the error J;—J"
behaves consistently with the superlinear convergence rate of the Newton
step that starts at J. In other words, for J relatively close to J*, we have

the local estimate }
17z = "Il = o(|lJ = J*]), (1.59)

illustrated in Fig. 1.5.14.

A salient characteristic of this superlinear relation is that the perfor-
mance error rises rapidly outside the region of superlinear convergence of
Newton’s method. Note that small improvements in the quality of J (e.g.,
better sampling methods, improved confidence intervals, and the like, with-
out changing the approximation architecture) have little effect, both inside
and outside the region of convergence.
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Figure 1.5.14 Schematic illustration of the correct superlinear error bound (1.59)
for the case of ¢-step lookahead approximation in value space scheme. The perfor-
mance error rises rapidly outside the region of convergence of Newton’s method
[the illustration in the figure is not realistic; in fact the region of convergence is
not bounded as it contains lines of the form e, where 7 is a scalar and e is the
unit vector (all components equal to 1)]. Note that this region expands as the
size of lookahead ¢ increases. Furthermore, with long enough lookahead ¢, the ¢-
step lookahead policy i can be shown to be ezxactly optimal for many problems of
interest; this is a theoretical result, which holds for a-discounted finite-state prob-
lems, among others, and has been known since the 60s-70s (Prop. 2.3.1 of [Ber22a)]
proves a general form of this result that applies beyond discounted problems).

In practical terms, there is often a huge difference, both quantitative
and qualitative, between the linear error bounds (1.57)-(1.58) and the su-
perlinear error bound (1.59). Moreover, the linear bounds, despite their
popularity in academia, often misdirect academic research and confuse
practitioners.t Note that as we have mentioned earlier, the qualitative
performance behavior predicted in Fig. 1.5.14 holds very broadly in ap-

T A study by Laidlaw, Russell, and Dragan [LRD23] has assessed the prac-
tical performance of popular methods on a set of 155 problems, and found wide
disparities relative to theoretical predictions. Quoting from this paper: “we find
that prior bounds do not correlate well with when deep RL succeeds vs. fails.”

The study goes on to assert the importance of long multistep lookahead
(the size of ¢) in stabilizing the performance of approximation in value space
schemes. It also confirms computationally a known theoretical result, namely
that with long enough lookahead ¢, the ¢-step lookahead policy fi is exactly op-
timal (but the required length of ¢ depends on the approximation error J— J*).
This fact has been known since the 60s-70s for a-discounted finite-state problems.
A generalization of this result is given as Prop. 2.3.1 of the abstract DP book
[Ber22b]; see also Section A.4 of the book [Ber22a], which discusses the conver-
gence of Newton’s method for systems of equations that involve nondifferentiable
mappings (such as the Bellman operator).
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Figure 1.5.15 Illustration of the global error bound for the one-step lookahead
error Ky — K* as a function of K, compared with the true error obtained by one
step of Newton’s method starting from K; cf. Example 1.5.1.

The problem data are a =2, b =2, ¢ = 1, and » = 5. With these numerical
values, we have K* = 5 and the region of stability is (S,00) with S = 1.25.
The modulus of contraction o used in the figure is computed at § = S + 0.5.
Depending on the chosen value of S, o can be arbitrarily close to 1, but decreases
as S increases. Note that the error Ky — K* is much smaller when K is larger
than K* than when it is lower, because the slope of F' diminishes as K increases.
This is not reflected by the global error bound.

T

proximation in value space, because it relies on notions of abstract DP
that apply very generally, for arbitrary state spaces, control spaces, and

other problem characteristics; see the abstract DP book [Ber22al.

We illustrate the failure of the linear error bound (1.57) to predict
the performance of the one-step lookahead policy with an example given

in Fig. 1.5.15.

Example 1.5.1 (Global and Actual Error Bounds for a
Linear Quadratic Problem)

Consider the one-dimensional linear quadratic problem, involving the system
Tpy1 = axy, +bug, and the cost per stage gz +ruz. We will consider one-step

lookahead, and a quadratic cost function approximation

J(z) = Kz,

with K within the region of stability, which is some interval of the form

(S,00). The Riccati operator is

a’rK

FR) = g

t4
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and the one-step lookahead policy fi has cost function
Ja(x) = Kpa?,

where Kj is obtained by applying one step of Newton’s method for solving
the Riccati equation K = F(K), starting at K = K.

Let S be the boundary of the region of stability, i.e., the value of K at
which the derivative of F' with respect to K is equal to 1:

OF (K)

0K ‘K:S =1

Then the Riccati operator F is a contraction within any interval [S, co) with
S > S, with a contraction modulus o that depends on S. In particular, « is
given by

_ OF(K)

T 0K ‘ K=35

and satisfies 0 < a < 1 because S > S, and the derivative of F' is positive
and monotonically decreasing to 0 as K increases to co.

The error bound (1.57) can be rederived for the case of quadratic func-
tions and can be rewritten in terms of quadratic cost coefficients as

Ki—K*< 12—0‘a|f(—K*|7 (1.60)

where K} is the quadratic cost coefficient of the lookahead policy & [and
also the result of a Newton step for solving the fixed point Riccati equation
F = F(K) starting from K]. A plot of (K;—K*) as a function of K, compared
with the bound on the right side of this equation is shown in Fig. 1.5.15. It
can be seen that (K — K™*) exhibits the qualitative behavior of Newton’s
method, which is very different than the bound (1.60). An interesting fact
is that the bound (1.60) depends on «, which in turn depends on how close
K is to the boundary S of the region of stability, while the local behavior of
Newton’s method is independent of S.

How Approximation in Value Space Can Fail and What to Do
About It

Let us finally discuss the most common way that approximation in value
space can fail. Consider the case where the terminal cost approximation
J is obtained through training with data of an approximation architecture
such as a neural network (e.g., as in AlphaZero and TD-Gammon). Then
there are three components that determine the approximation error J — J*:

(a) The power of the architecture, which roughly speaking is a measure
of the error that would be obtained if infinite data were available and
were used optimally to obtain J.

(b) The error degradation due the limited availability of training data.
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(¢) The additional error degradation due to imperfections in the training
methodology.

Thus if the architecture is not powerful enough to bring J — J* within
the region of convergence of Newton’s method, approximation in value space
with one-step lookahead will likely fail, no matter how much data is collected
and how effective the associated training method is.

In this case, there are two potential practical remedies:

(1) Use a more powerful architecture/neural network for representing J.

(2) Extend the combined length of the lookahead minimization and trun-
cated rollout in order to bring the effective value of J within the
region of convergence of Newton’s method.

The first remedy typically requires a deep neural network or transformer,
which uses more weights and requires more expensive training (see Chap-
ter 3).t The second remedy requires longer on-line computation and/or
simulation, which may run up against some practical real-time implemen-
tation constraint. Parallel computation and sophisticated multistep looka-
head implementation methods may help to mitigate these requirements (see
Chapter 2).

EXAMPLES, REFORMULATIONS, AND SIMPLIFICATIONS

In this section we provide a few examples that illustrate problem formula-
tion techniques, exact and approximate solution methods, and adaptations
of the basic DP algorithm to various contexts. We refer to DP textbooks
for extensive additional discussions of modeling and problem formulation
techniques (see e.g., the many examples that can be found in the author’s
DP and RL textbooks [Berl2], [Ber17al, [Ber19a], [Ber20a], as well as in
the neuro-dynamic programming book [BeT96]).

An important fact to keep in mind is that there are many ways to
model a given practical problem in terms of DP, and that there is no unique
choice for state and control variables. This will be brought out by the
examples in this section, and is facilitated by the generality of DP: its basic
algorithmic principles apply for arbitrary state, control, and disturbance
spaces, and system and cost functions.

1.6.1 A Few Words About Modeling

In practice, optimization problems seldom come neatly packaged as mathe-
matical problems that can be solved by DP/RL or some other methodology.

1 For a recent example of implementation of a grandmaster-level chess pro-
gram with one-step lookahead and a huge-size (270M parameter) neural network
position evaluator, see Ruoss et al. [RDM24].
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Generally, a practical problem is a prime candidate for a DP formulation if
it involves multiple sequential decisions, which are separated by feedback,
i.e., by observations that can be used to enhance the effectiveness of future
decisions.

However, there are other types of problems that can be fruitfully
formulated by DP. These include the entire class of deterministic problems,
where there is no information to be collected: all the information needed
in a deterministic problem is either known or can be predicted from the
problem data that is available at time 0 (see, e.g., the traveling salesman
Example 1.2.3). Moreover, for deterministic problems there is a plethora
of non-DP methods, such as linear, nonlinear, and integer programming,
random and nonrandom search, discrete optimization heuristics, etc. Still,
however, the use of RL methods for deterministic optimization is a major
subject in this book, which will be discussed in Chapter 2. We will argue
there that rollout and its variations, when suitably applied, can improve
substantially on the performance of other heuristic or suboptimal methods,
however derived. Moreover, we will see that often for discrete optimization
problems the DP sequential structure is introduced artificially, with the
aim to facilitate the use of approximate DP/RL methods.

There are also problems that fit quite well into the sequential struc-
ture of DP, but can be fruitfully addressed by RL methods that do not
have a fundamental connection with DP. An important case in point is
policy gradient and policy search methods, which will not be considered
in this book. Here the policy of the problem is parametrized by a set of
parameters, so that the cost of the policy becomes a function of these pa-
rameters, and can be optimized by non-DP methods such as gradient or
random search-based suboptimal approaches. This generally relates to the
approximation in policy space approach, which we have discussed in Sec-
tion 1.3.3 and we will discuss further in Section 3.4; see also Section 5.7 of
the RL book [Ber19a].

As a guide for formulating optimal control problems in a manner that
is suitable for a DP solution the following two-stage process is suggested:

(a) Identify the controls/decisions ug and the times k at which these con-
trols are applied. Usually this step is fairly straightforward. However,
in some cases there may be some choices to make. For example in
deterministic problems, where the objective is to select an optimal
sequence of controls {uo, ..., un—_1}, one may lump multiple controls
to be chosen together, e.g., view the pair (ug,u1) as a single choice.
This is usually not possible in stochastic problems, where distinct de-
cisions are differentiated by the information/feedback available when
making them.

(b) Select the states zx. The basic guideline here is that zj should en-
compass all the information that is relevant for future optimization,
i.e., the information that is known to the controller at time k and
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can be used with advantage in choosing uy. In effect, at time k the
state x should separate the past from the future, in the sense that
anything that has happened in the past (states, controls, and dis-
turbances from stages prior to stage k) is irrelevant to the choices
of future controls as long we know zj. Sometimes this is described
by saying that the state should have a “Markov property” to express
an analogy with states of Markov chains, where (by definition) the
conditional probability distribution of future states depends on the
past history of the chain only through the present state.

The control and state selection may also have to be refined or special-
ized in order to enhance the application of known results and algorithms.
This includes the choice of a finite or an infinite horizon, and the availability
of good base policies or heuristics in the context of rollout.

Note that there may be multiple possibilities for selecting the states,
because information may be packaged in several different ways that are
equally useful from the point of view of control. It may thus be worth con-
sidering alternative ways to choose the states; for example try to use states
that minimize the dimensionality of the state space. For a trivial example
that illustrates the point, if a quantity xj qualifies as state, then (xp_1,zk)
also qualifies as state, since (zy_1,xy) contains all the information con-
tained within xj that can be useful to the controller when selecting wy.
However, using (zy_1, k) in place of zj, gains nothing in terms of optimal
cost while complicating the DP algorithm that would have to be executed
over a larger space.

The concept of a sufficient statistic, which refers to a quantity that
summarizes all the essential content of the information available to the
controller, may be useful in providing alternative descriptions of the state
space. An important paradigm is problems involving partial or imperfect
state information, where xj evolves over time but is not fully accessible
for measurement (for example, x; may be the position/velocity vector of
a moving vehicle, but we may obtain measurements of just the position).
If I) is the collection of all measurements and controls up to time k (the
information vector), it is correct to use Ij, as state in a reformulated DP
problem that involves perfect state observation. However, a better alter-
native may be to use as state the conditional probability distribution

Py (zy | Ir),

called belief state, which (as it turns out) subsumes all the information
that is useful for the purposes of choosing a control. On the other hand,
the belief state Py(xy | Ix) is an infinite-dimensional object, whereas Iy
may be finite dimensional, so the best choice may be problem-dependent.
Still, in either case, the stochastic DP algorithm applies, with the sufficient
statistic [whether I}, or Py(zy | Ii)] playing the role of the state.
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A Few Words about the Choice of an RL Method

An attractive aspect of the current RL methodology, inherited by the gen-
erality of our DP formulation, is that it can address a very broad range of
challenging problems, deterministic as well as stochastic, discrete as well as
continuous, etc. However, in the practical application of RL methods one
has to contend with limited theoretical guarantees. In particular, several of
the RL methods that have been successful in practice have less than solid
performance properties, and may not work on a given problem, even one
of the type for which they are designed.

This is a reflection of the state of the art in the field: there are no
methods that are guaranteed to work for all or even most DP problems.
However, there are enough methods to try on a given problem with a
reasonable chance of success in the end (after some heuristic and problem
specific tuning). For this reason, it is important to develop insight into the
inner workings of various methods, as a means of selecting the proper type
of methodology to try on a given problem.}

A related consideration is the context within which a method is ap-
plied. In particular, is it a single problem that is being addressed, such as
chess that has fixed rules and a fixed initial condition, or is it a family of
related problems that must be periodically be solved with small variations
in its data or its initial conditions? Also, are the problem data fixed or
may they change over time as the system is being controlled?

Generally, convenient but relatively unreliable methods, which can be
tuned to the problem at hand, may be tried with a reasonable chance of
success if a single problem is addressed. Similarly, RL methods that require
extensive tuning of parameters, including ones that involve approximation
in policy space and the use of neural networks, may be well suited for a
stable problem environment and a single problem solution. However, they
not well suited for problems with a variable environment and/or real-time
changes of model parameters. For such problems, RL methods based on
approximation in value space and on-line play, possibly involving on-line
replanning, are much better suited.

Note also that even when on-line replanning is not needed, on-line
play may improve substantially the performance of off-line trained policies,
so we may wish to use it in conjunction with off-line training. This is
due to the Newton step that is implicit in one-step or multistep lookahead
minimization, cf. our discussion of the AlphaZero and TD-Gammon archi-
tectures in Section 1.1. Of course the computational requirements of an

1 Aside from insight and intuition, it is also important to have a foundational
understanding of the analytical principles of the field and of the mechanisms un-
derlying the central computational methods. The role of the theory in this respect
is to structure mathematically the methodology, guide the art, and delineate the
sound from the flawed ideas.
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on-line play method may be substantial and have to be taken into account
when assessing its suitability for a particular application. In this connec-
tion, deterministic problems are better suited than stochastic problems for
on-line play. Moreover, methods that are well-suited for parallel compu-
tation, and/or involve the use of certainty equivalence approximations are
generally better suited for a stochastic control environment.

1.6.2 Problems with a Termination State

Many DP problems of interest involve a termination state, i.e., a state t
that is cost-free and absorbing in the sense that for all k,

gkt up,wg) =0, fr(t,ug, wg) =t, for all wy and uy € Ug(t).

Thus the control process essentially terminates upon reaching ¢, even if this
happens before the end of the horizon. One may reach ¢ by choice if a special
stopping decision is available, or by means of a random transition from
another state. Problems involving games, such as chess, Go, backgammon,
and others involve a termination state (the end of the game) and have
played an important role in the development of the RL methodology.t

Generally, when it is known that an optimal policy will reach the ter-
mination state with certainty within at most some given number of stages
N, the DP problem can be formulated as an N-stage horizon problem, with
a very large termination cost for the nontermination states.I The reason
is that even if the termination state ¢ is reached at a time k < N, we can
extend our stay at ¢t for an additional N — k stages at no additional cost,
so the optimal policy will still be optimal, since it will not incur the large
termination cost at the end of the horizon.

Example 1.6.1 (Parking)

A driver is looking for inexpensive parking on the way to his destination.
The parking area contains N spaces, numbered 0,..., N — 1, and a garage
following space N — 1. The driver starts at space 0 and traverses the parking
spaces sequentially, i.e., from space k he goes next to space k + 1, etc. Each
parking space k costs c(k) and is free with probability p(k) independently of
whether other parking spaces are free or not. If the driver reaches the last

T Games often involve two players/decision makers, in which case they can
be addressed by suitably modified exact or approximate DP algorithms. The
DP algorithm that we have discussed in this chapter involves a single decision
maker, but can be used to find an optimal policy for one player against a fixed
and known policy of the other player.

I When an upper bound on the number of stages to termination is not known,
the problem may be formulated as an infinite horizon problem of the stochastic
shortest path problem.
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Garage
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Figure 1.6.1 Cost structure of the parking problem. The driver may park at
space k = 0,1,..., N — 1 at cost c(k), if the space is free, or continue to the
next space k + 1 at no cost. At space N (the garage) the driver must park at
cost C.

parking space N — 1 and does not park there, he must park at the garage,
which costs C. The driver can observe whether a parking space is free only
when he reaches it, and then, if it is free, he makes a decision to park in that
space or not to park and check the next space. The problem is to find the
minimum expected cost parking policy.

We formulate the problem as a DP problem with IV stages, correspond-
ing to the parking spaces, and an artificial termination state ¢ that corre-
sponds to having parked; see Fig. 1.6.1. At each stage k =1,...,N — 1, we
have three states: the artificial termination state t, and the two states F' and
F, corresponding to space k being free or taken, respectively. At stage 0, we
have only two states, F' and F, and at the final stage there is only one state,
the termination state ¢. The decision/control is to park or continue at state F'
[there is no choice at states F' and state ¢]. From location k, the termination
state t is reached at cost c(k) when a parking decision is made (assuming
location k is free). Otherwise, the driver continues to the next state at no
cost. At stage N, the driver must park at cost C.

Let us now derive the form of the DP algorithm, denoting:

Ji (F): The optimal cost-to-go upon arrival at a space k that is free.
Ji(F): The optimal cost-to-go upon arrival at a space k that is taken.
Ji (t): The cost-to-go of the “parked” /termination state ¢.
The DP algorithm for k =0,..., N — 1 takes the form
min [c(k), p(k + 1) Ji 1 (F) + (1= p(k + 1)) Ji 1 (F)] ifk < N -1,
min [¢(N — 1), C] ifk=N-—1,
Jo(F) = § PR+ 1T (F) + (1—pk+1))J5,(F) ifk<N-—1,

C ifk=N-1,

for the states other than the termination state ¢, while for ¢ we have
Ji(t) =0, k=1,...,N.

The minimization above corresponds to the two choices (park or not park) at
the states F' that correspond to a free parking space.
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While this algorithm is easily executed, it can be written in a simpler
and equivalent form. This can be done by introducing the scalars

T = p()JE(F) + (1-p(k) i (F), k=0, N-1,

which can be viewed as the optimal expected cost-to-go upon arriving at space
k but before verifying its free or taken status. Indeed, from the preceding DP
algorithm, we have

Jn-1=p(N—1)min [¢(N — 1), C] + (1 — p(N - 1))C,

Jr = p(k)min [c(k), Jri1] + (1= p(k)) Jes1, k=0,...,N—2.

From this algorithm we can also obtain the optimal parking policy:
Park at space k =0,..., N — 1 if it is free and we have c(k) < Jrt1.

This is an example of DP simplification that occurs when the state involves
components that are not affected by the choice of control, and will be ad-
dressed in the next section.

1.6.3 General Discrete Optimization Problems

Discrete deterministic optimization problems, including challenging combi-
natorial problems, can be typically formulated as DP problems by breaking
down each feasible solution into a sequence of decisions/controls, similar
to the preceding four queens example, the scheduling Example 1.2.1, and
the traveling salesman Examples 1.2.2 and 1.2.3. This formulation often
leads to an intractable exact DP computation because of an exponential
explosion of the number of states as time progresses. However, a reformu-
lation to a discrete optimal control problem brings to bear approximate
DP methods, such as rollout and others, to be discussed shortly, which can
deal with the exponentially increasing size of the state space.

Let us now extend the ideas of the examples just noted to the general
discrete optimization problem:

minimize G(u)
. (1.61)
subject to u € U,

where U is a finite set of feasible solutions and G(u) is a cost function.
We assume that each solution u has N components; i.e., it has the
form

u = (uo, ..., unN-1),
where N is a positive integer. We can then view the problem as a sequential

decision problem, where the components uo,...,uny—; are selected one-at-
a-time. A k-tuple (uo,...,ur—1) consisting of the first k components of a
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Figure 1.6.2 Formulation of a discrete optimization problem as a DP problem
with N stages. There is a cost G(u) only at the terminal stage on the arc con-
necting an N-solution u = (ug, ..., un_1) upon reaching the terminal state. Note
that there is only one incoming arc at each node.

solution is called a k-solution. We associate k-solutions with the kth stage
of the finite horizon discrete optimal control problem shown in Fig. 1.6.2.
In particular, for k = 1,..., N, we view as the states of the kth stage all
the k-tuples (uo,...,ur—1). For stage k =0,..., N — 1, we view uy, as the
control. The initial state is an artificial state denoted s. From this state,
by applying uo, we may move to any “state” (uo), with up belonging to the
set

Uy = {&0 | there exists a solution of the form (@, @1,...,dN—1) € U}.
(1.62)
Thus Uy is the set of choices of ug that are consistent with feasibility.
More generally, from a state (uo, ..., ug—1), we may move to any state
of the form (uo, ..., ur—1,ux), upon choosing a control uj that belongs to
the set

Uk(’u,o, ce ,’u,kfl) e {uk | for some Ug41,...,un—1 We have

(U,o, ey Uk—1, Uk U1y - - - ,ﬂNfl) € U}.

(1.63)
These are the choices of uy that are consistent with the preceding choices
uo, - . -, ug—1, and are also consistent with feasibility [we do not exclude the
possibility that the set (1.63) is empty]. The last stage corresponds to the
N-solutions v = (ug,...,un—1), and the terminal cost is G(u); see Fig.

1.6.2. All other transitions in this DP problem formulation have cost 0.
Let J:(uo, ...,up—1) denote the optimal cost starting from the k-
solution (ug,...,uk—1), i.e., the optimal cost of the problem over solutions
whose first k& components are constrained to be equal to ug, ..., ux_1. The
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DP algorithm is described by the equation

* . *
']k(an"'vukfl) = 11N Jk+1(u05"'7uk71;uk)7
up €U (ug,-- - up—1)

with the terminal condition
J;[(UQ, e ,U,Nfl) = G(UO, e ,uNfl).

This algorithm executes backwards in time: starting with the known func-
tion J;, = (@, we compute J;,fl, then JXFQ, and so on up to computing Jg.
An optimal solution (ug,...,u}_;) is then constructed by going forward
through the algorithm

. *
uj, € arg min S (g ooup_ug), k=0,...,N—1,

up €UR (U, uy_y
(1.64)
where Uy is given by Eq. (1.62), and Uy, is given by Eq. (1.63): first compute
ug, then uf, and so on up to u},_,; cf. Eq. (1.8).

Of course here the number of states typically grows exponentially
with IV, but we can use the DP minimization (1.64) as a starting point for
approximation methods. For example we may try to use approximation in
value space, whereby we replace JZ 41 With some suboptimal jk+1 in Eq.
(1.64). One possibility is to use as

jk+1(u8, e U g UR),

the cost generated by a heuristic method that solves the problem sub-
optimally with the values of the first k + 1 decision components fixed at
ug, ..., up_q,up. Thisis the rollout algorithm, which turns out to be a very
simple and effective approach for approximate combinatorial optimization.

Let us finally note that while we have used a general cost function G
and constraint set U in our discrete optimization model of this section, in
many problems G and/or U may have a special (e.g., additive) structure,
which is consistent with a sequential decision making process and may
be computationally exploited. The traveling salesman Example 1.2.2 is a
case in point, where G consists of the sum of N components (the intercity
travel costs), one per stage. Our next example deals with a problem of
great current interest.

Example 1.6.2 (A Large Language Model Based on N-Grams)

Let us consider an N-gram model, whereby a text string consisting of N
words is transformed into another string of N words by adding a word at the
front of the string and deleting the word at the back of the string. We view
the text strings as states of a dynamic system affected by the added word
choice, which we view as the control. We denote by x; the string obtained at
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Figure 1.6.3 Schematic visualization of an LLM problem based on N-grams.

time k, and by ux the word added at time k. We assume that wug is chosen
from a given set U(x). Thus we have a controlled dynamic system, which is
deterministic and is described by an equation of the form

Trt1 = (2, ur),

where f specifies the operation of adding uj at the front of xx and removing
the word at the back of xx. The initial string xo is assumed given.

If we have a cost function G by which to evaluate a text string, we can
pose a DP problem with either a finite or an infinite horizon. For example
if the string evolution terminates after exactly N steps, we obtain the finite
horizon problem of minimizing the function G(xn) of the final text string zn.
In this case, zn is obtained after we have a chance to change successively all
the words of the initial string xo, subject to the constraints uy € U(xx).

Another possibility is to introduce a termination action, whereby addi-
tion/deletion of words is optionally stopped at some time and the final text
string z is obtained with cost G(x). In such a problem formulation, we may
also include an additive stage cost that depends on u. This is an infinite hori-
zon formulation that involves an additional termination state ¢ in the manner
of Section 1.6.2.

Note that in both the finite and the infinite horizon formulation of the
problem, the initial string x¢ may include a “prompt,” which may be subject
to optimization through some kind of “prompt engineering.” Depending on
the context, this may include the use of another optimization or heuristic
algorithm, perhaps unrelated to DP, which searches for a favorable prompt
from within a given set of choices.

Interesting policies for the preceding problem formulation may be pro-
vided by a neural network, such as a Generative Pretrained Transformer
(GPT). In our terms, the GPT can be viewed simply as a policy that gen-
erates next words. This policy may be either deterministic, i.e., uxr = p(zg)
for some function p, or it may be a “randomized” policy, which generates
uy, according to a probability distribution that depends on xx. Our DP for-
mulation can also form the basis for policy improvement algorithms such as
rollout, which aim to improve the quality of the output generated by the
GPT. Another, more ambitious, possibility is to consider an approximate,
neural network-based, policy iteration/self-training scheme, such as the ones
discussed earlier, based on the AlphaZero/TD-Gammon architecture. Such
a scheme generates a sequence of GPTs, with each GPT trained with data
provided by the preceding GPT, a form of self-learning in the spirit of the
AlphaZero and TD-Gammon policy iteration algorithms, cf. Section 1.1.
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It is also possible to provide an infinite horizon formulation of the
general discrete optimization problem

minimize G(u)
. (1.65)
subject to u € U,
where U is a finite set of feasible solutions, G(u) is a cost function, and u
consists of N components, u = (uo, ..., un—1); cf. Eq. (1.61). To this end,
we introduce a termination state ¢ that the system enters after N steps.
At step k, the component uy, is selected subject to uy € Ug(uo,. .., uk—1,
where the constraint set Ug(uo, ..., ur—1 is given by Eq. (1.63). This is a
special case of a general finite to infinite horizon stochastic DP problem

reformulation, which we describe in the next section.

1.6.4 General Finite to Infinite Horizon Reformulation

There is a conceptually important reformulation that transforms a finite
horizon problem, possibly involving a nonstationary system and cost per
stage, to an equivalent infinite horizon problem. It is based on introducing
an expanded state space, which is the union of the state spaces of the
finite horizon problem plus an artificial cost-free termination state that the
system moves into at the end of the horizon. This reformulation is of great
conceptual value, as it provides a mechanism to bring to bear ideas that can
be most conveniently understood within an infinite horizon context. For
example, it helps to understand the synergy of off-line training and on-line
play based on Newton’s method, and the related insights that explain the
good performance of rollout algorithms in practice.
To define the reformulation, let us consider the N-stage horizon stochas-

tic problem of Section 1.3.1, whose system has the form

Tr41 :fk(xkvuk;wk)v k:O,...,N—l, (166)

and let us denote by Xi, £ = 0,...,N, and U, k = 0,...,N — 1, the
corresponding state spaces and control spaces, respectively. We introduce
an artificial termination state ¢, and we consider an infinite horizon problem
with state and control spaces X and U given by

X =N Xu{t}, U=Ul,Us (1.67)

see Fig. 1.6.4.
The system equation and the control constraints of this problem are
also reformulated so that states in Xg, £k = 0,..., N — 1, are mapped to

states in X1, according to Eq. (1.66), while states zy € X are mapped
to the termination state ¢ at cost gy (zn). Upon reaching ¢, the state stays
at ¢ at no cost. Thus the policies of the infinite horizon problem map states
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Figure 1.6.4 Illustration of the infinite horizon equivalent of a finite horizon
problem. The state space is X = (Ui\’:OXk) U {t}, and the control space is

U = UkN;()l Uj. Transitions from states xp € X}, lead to states in xp41 € Xg41
according to the system equation zpy1 = fr(zk,uk, wr), and they are stochas-
tic when they involve the random disturbance wy. The transition from states
zn € Xy lead deterministically to the termination state at cost gn(zn). The
termination state t is cost-free and absorbing.

The infinite horizon optimal cost J*(xj) and optimal policy u*(zy) at state
xp € X} of the infinite horizon problem are equal to optimal cost-to-go J}(xx)
and optimal policy pj (x)) of the finite horizon problem.

2k € Xi to controls in Ug(xg) C Uy, and consist of functions uy(zx) that
are policies of the finite horizon problem. Moreover, the Bellman equation
for the infinite horizon problem is identical to the DP algorithm for the
finite horizon problem.

It can be seen that the optimal cost and optimal control, J*(x)) and
u*(zp), at a state x € X, in the infinite horizon problem are equal to the
optimal cost-to-go J; (xx) and optimal control ju(xy) of the original finite
horizon problem, respectively; cf. Fig. 1.6.4. Moreover approximation in
value space and rollout in the finite horizon problem translate to infinite
horizon counterparts, and can be understood as Newton steps for solving
the Bellman equation of the infinite horizon problem (or equivalently the
DP algorithm of the finite horizon problem).
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In summary, finite horizon problems can be viewed as infinite hori-
zon problems with a special structure that involves a termination state ¢,
and the state and control spaces of Eq. (1.67), as illustrated in Fig. 1.6.4.
The Bellman equation of the infinite horizon problem coincides with the
DP algorithm of the finite horizon problem. The PI algorithm for the in-
finite horizon problem can be translated directly to a PI algorithm for the
finite horizon problem, involving repeated policy evaluations and policy
improvements. Finally, the Newton step interpretations for approximation
in value space and rollout schemes for the infinite horizon problem have
straightforward analogs for finite horizon problems, and explain the power-
ful cost improvement mechanism that underlies the rollout algorithm and
its variations.

1.6.5 State Augmentation, Time Delays, Forecasts, and
Uncontrollable State Components

In practice, we are often faced with situations where some of the assump-
tions of our stochastic optimal control problem formulation are violated.
For example, the disturbances may involve a complex probabilistic descrip-
tion that may create correlations that extend across stages, or the system
equation may include dependences on controls applied in earlier stages,
which affect the state with some delay.

Generally, in such cases the problem can be reformulated into our
DP problem format through a technique, which is called state augmentation
because it typically involves the enlargement of the state space. The general
intuitive guideline in state augmentation is to include in the enlarged state
at time k all the information that is known to the controller at time k and
can be used with advantage in selecting uy. State augmentation allows the
treatment of time delays in the effects of control on future states, correlated
disturbances, forecasts of probability distributions of future disturbances,
and many other complications. We note, however, that state augmentation
often comes at a price: the reformulated problem may have a very complex
state space. We provide some examples.

Time Delays

In some applications the system state xx41 depends not only on the pre-
ceding state xj and control uy, but also on earlier states and controls. Such
situations can be handled by expanding the state to include an appropriate
number of earlier states and controls.

As an example, assume that there is at most a single stage delay in
the state and control; i.e., the system equation has the form

Thy1 = [r(Th, Tp—1, Uk, Up—1, W), k=1,...,N -1, (1.68)

z1 = fo(zo,uo, wo).
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If we introduce additional state variables y; and si, and we make the
identifications yr = x_1, 2x = ug—1, the system equation (1.68) yields

Thy1 Se(Tr, Yr, ur, 21, W)
Yet1 | = Tk . (1.69)
Zk+1 Uk

By defining Zy, = (xk, yk, 2k) as the new state, we have

Trr = fr( @, up, wy),

where the system function fy is defined from Eq. (1.69).

By using the preceding equation as the system equation and by ex-
pressing the cost function in terms of the new state, the problem is reduced
to a problem without time delays. Naturally, the control u; should now
depend on the new state Ty, or equivalently a policy should consist of func-
tions g of the current state zy, as well as the preceding state xp_; and
the preceding control ug_1.

When the DP algorithm for the reformulated problem is translated
in terms of the variables of the original problem, it takes the form

Jy(xNn) = gn(zN),

Jy_1(zn-1,ZN—2,un—2)

= min EwN,l{gN—l(ﬂiN—l,UN—l,wN—l)
uN—1EUN_1(zN-1)

+Jy (fol(iCNfla TN-2,UN—1, UN—2, wal)) }7

>k .
Jp (@p, xp—1,u,—1) = min Ewk{gk(xkaukawk)
up€UL(7g)

+ J;:+1(fk(xk7xk—laukuuk—lawk)uxkauk)}u k= 1,.. '7N_ 2,

Jo(zo) = min By, {go(wmuo,wo) +J; (f0($07u07w0)7$07u0)}-
ug€Up(x0)

Similar reformulations are possible when time delays appear in the
cost or the control constraints; for example, in the case where the cost is

N-1
E {QN(ﬂfNaCCN—l) + go(@o, uo, wo) + Y _ gk(ﬂﬁk,»’ckhuk,wk)} :
k=1

The extreme case of time delays in the cost arises in the nonadditive form

E{gn(ZN,TN-1,. ., B0, UN-1, ..., U0, WN—1,...,W0)}.
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Then, the problem can be reduced to the standard problem format, by
using as augmented state

Tk = (:Ekuxk—lu'"7x07uk—17"'7u07wk—17"'7w0)

and F { gn(Z N)} as reformulated cost. Policies consist of functions uy of
the present and past states zy, ..., xo, the past controls ug_1,...,up, and
the past disturbances wg—_1,...,wo. Naturally, we must assume that the
past disturbances are known to the controller. Otherwise, we are faced with
a problem where the state is imprecisely known to the controller, which will
be discussed in the next section.

Forecasts

Consider a situation where at time k the controller has access to a forecast
yr that results in a reassessment of the probability distribution of the sub-
sequent disturbance wy and, possibly, future disturbances. For example, yy,
may be an exact prediction of wy or an exact prediction that the probability
distribution of wy, is a specific one out of a finite collection of distributions.
Forecasts of interest in practice are, for example, probabilistic predictions
on the state of the weather, the interest rate for money, and the demand for
inventory. Generally, forecasts can be handled by introducing additional
state variables corresponding to the information that the forecasts provide.
We will illustrate the process with a simple example.

Assume that at the beginning of each stage k, the controller receives
an accurate prediction that the next disturbance wy will be selected ac-
cording to a particular probability distribution out of a given collection of
distributions { P, ..., Pp}; i.e., if the forecast is ¢, then wy is selected ac-
cording to P;. The a priori probability that the forecast will be i is denoted
by p; and is given.

The forecasting process can be represented by means of the equation

Yr+1 = &k,

where yi41 can take the values 1, ..., m, corresponding to the m possible
forecasts, and & is a random variable taking the value 7 with probability
pi. The interpretation here is that when & takes the value ¢, then wy4;
will occur according to the distribution F;.

By combining the system equation with the forecast equation yx11 =
&, we obtain an augmented system given by

Try1) _ fr(@r, uk, wi)
Yht1 &k '
The new state and disturbance are

Zy = (Tk, Yi), Wy = (Wi, &)



94 Exact and Approximate Dynamic Programming Chap. 1

The probability distribution of wy is determined by the distributions P;
and the probabilities p;, and depends explicitly on Zj (via yj) but not on
the prior disturbances.

Thus, by suitable reformulation of the cost, the problem can be cast
as a stochastic DP problem. Note that the control applied depends on
both the current state and the current forecast. The DP algorithm takes
the form

T (@h, yr) = uké?ﬁm Ewk{gk(xkvukawk)

m
+ ZPiJZH(fk(Ik,Uk,wk),i) | yk},
i=1

(1.70)
where y; may take the values 1,...,m, and the expectation over wy is
taken with respect to the distribution P, .

Note that the preceding formulation admits several extensions. One
example is the case where forecasts can be influenced by the control action
(e.g., pay extra for a more accurate forecast), and may involve several
future disturbances. However, the price for these extensions is increased
complexity of the corresponding DP algorithm.

Problems with Uncontrollable State Components

In many problems of interest the natural state of the problem consists of
several components, some of which cannot be affected by the choice of
control. In such cases the DP algorithm can be simplified considerably,
and be executed over the controllable components of the state.

As an example, let the state of the system be a composite (x, yx) of
two components xj and yi. The evolution of the main component, zy, is
affected by the control uy according to the equation

Th+1 = fk($k7yk7uk7wk)u

where the distribution Py(wy | @k, yk, ug) is given. The evolution of the
other component, yi, is governed by a given conditional distribution Py (yx |
xr) and cannot be affected by the control, except indirectly through xy.
One is tempted to view y; as a disturbance, but there is a difference: yj is
observed by the controller before applying uy, while wy occurs after uy is
applied, and indeed wy may probabilistically depend on wuy.

It turns out that we can formulate a DP algorithm that is executed
over the controllable component of the state, with the dependence on the
uncontrollable component being “averaged out” (see also the parking Ex-
ample 1.6.1). In particular, let JZ (2, yx) denote the optimal cost-to-go at
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stage k and state (xy, yx), and define

Tr(@e) = By { Ty @k ye) | 2 }-
Note that the preceding expression can be interpreted as an “average cost-
to-go” at xy, (averaged over the values of the uncontrollable component yy ).
Then, similar to the parking Example 1.6.1, a DP algorithm that generates
Ji(z1) can be obtained, and has the following form:

jk(Ik) = Eyk{ min Ey, {gk(Ik,yk,uk,wk)
up €UL (2K, k)

+ Tt (Fre(@n Yo, s wi)) | Ikvykauk}’ T,

(1.71)
This is a consequence of the calculation

Te(ar) = By {5 (@, ue) | 21}

- Euk{ min E’wk,Ik+1,yk+1{gk}(xk7yk7ukHwk)
up €U (Tg,yk)

+ Jf o @1 k1) | o Yroun )| Ik}

= Eyk{ min - By oz, {gk(ﬂik, Yk, Uk, W)

up €U, (Tk,Yk)

+ By {1 @k, Yern) | wrer} | ‘T’ﬁyk’uk} | Ik}'

Note that the minimization in the right-hand side of the preceding
equation must still be performed for all values of the full state (z,yx) in
order to yield an optimal control law as a function of (xg, yx). Nonetheless,
the equivalent DP algorithm (1.71) has the advantage that it is executed
over a significantly reduced state space. Later, when we consider approx-
imation in value space, we will find that it is often more convenient to
approximate Ji () than to approximate J;. (21, yx); see the following dis-
cussions of forecasts and of the game of tetris.

As an example, consider the augmented state resulting from the incor-
poration of forecasts, as described earlier. Then, the forecast y; represents
an uncontrolled state component, so that the DP algorithm can be simpli-
fied as in Eq. (1.71). In particular, assume that the forecast y; can take
values 1 = 1,...,m with probability pi. Then, by defining

sz (@e,i), k=0,1,....N—1,
and jN(:vN) = gN(:CN) we have, using Eq. (1.70),

sz min {gk(:ﬂk,%wk)

up €U (zg)

+ i (fu(wr, wr, wr)) | yp = i},
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Figure 1.6.5 Illustration of a tetris board.

which is executed over the space of xj rather than x; and yi. Note that
this is a simpler algorithm to approximate than the one of Eq. (1.70).

Uncontrollable state components often occur in arrival systems, such

as queueing, where action must be taken in response to a random event
(such as a customer arrival) that cannot be influenced by the choice of
control. Then the state of the arrival system must be augmented to include
the random event, but the DP algorithm can be executed over a smaller
space, as per Eq. (1.71). Here is an example of this type.

Example 1.6.3 (Tetris)

Tetris is a popular video game played on a two-dimensional grid. Each square
in the grid can be full or empty, making up a “wall of bricks” with “holes”
and a “jagged top” (see Fig. 1.6.5). The squares fill up as blocks of different
shapes fall from the top of the grid and are added to the top of the wall. As a
given block falls, the player can move horizontally and rotate the block in all
possible ways, subject to the constraints imposed by the sides of the grid and
the top of the wall. The falling blocks are generated independently according
to some probability distribution, defined over a finite set of standard shapes.
The game starts with an empty grid and ends when a square in the top row
becomes full and the top of the wall reaches the top of the grid. When a
row of full squares is created, this row is removed, the bricks lying above this
row move one row downward, and the player scores a point. The player’s
objective is to maximize the score attained (total number of rows removed)
up to termination of the game, whichever occurs first.

We can model the problem of finding an optimal tetris playing strategy
as a finite horizon stochastic DP problem, with very long horizon. The state
consists of two components:

(1) The board position, i.e., a binary description of the full/empty status
of each square, denoted by .
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(2) The shape of the current falling block, denoted by y.

The control, denoted by wu, is the horizontal positioning and rotation applied
to the falling block. There is also an additional termination state which is
cost-free. Once the state reaches the termination state, it stays there with no
change in score. Moreover there is a very large amount added to the score
when the end of the horizon is reached without the game having terminated.

The shape y is generated according to a probability distribution p(y),
independently of the control, so it can be viewed as an uncontrollable state
component. The DP algorithm (1.71) is executed over the space of board
positions x and has the intuitive form

Jr(x) = Zp(y) max [g(x7y7 u) + Jir1 (f(z,, u))}, for all z,  (1.72)

where
g(z,y,u) is the number of points scored (rows removed),
f(x,y,u) is the next board position (or termination state),

when the state is (z,y) and control u is applied, respectively. The DP algo-
rithm (1.72) assumes a finite horizon formulation of the problem.

Alternatively, we may consider an undiscounted infinite horizon formu-
lation, involving a termination state (i.e., a stochastic shortest path problem).
The “reduced” form of Bellman’s equation, which corresponds to the DP al-
gorithm (1.72), has the form

J(z) = Zp(y) max {g(a@ym) + J(f(:c7y7u))}7 for all x.

The value J (z) can be interpreted as an “average score” at = (averaged over
the values of the uncontrollable block shapes y).

Finally, let us note that despite the simplification achieved by elimi-
nating the uncontrollable portion of the state, the number of states x is still
enormous, and the problem can only be addressed by suboptimal methods.f}

1.6.6 Partial State Information and Belief States
We have assumed so far that the controller has access to the exact value

of the current state xy, so a policy consists of a sequence of functions of
zi. However, in many practical settings, this assumption is unrealistic

1 Tetris is generally considered to be an interesting and challenging stochastic
testbed for RL algorithms, and has received a lot of attention over a period
spanning 20 years (1995-2015), starting with the papers [TsV96], [Bel96], and the
neuro-dynamic programming book [BeT96], and ending with the papers [GGS13],
[SGG15], which contain many references to related works in the intervening years.
All of these works are based on approximation in value space and various forms
of approximate policy iteration.
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because some components of the state may be inaccessible for observation,
the sensors used for measuring them may be inaccurate, or the cost of
measuring them more accurately may be prohibitive.

Often in such situations, the controller has access to only some of
the components of the current state, and the corresponding observations
may also be corrupted by stochastic uncertainty. For example in three-
dimensional motion problems, the state may consist of the six-tuple of po-
sition and velocity components, but the observations may consist of noise-
corrupted radar measurements of the three position components. This
gives rise to problems of partial or imperfect state information, which have
received a lot of attention in the optimization and artificial intelligence
literature (see e.g., [Ber17a], [RuN16]; these problems are also popularly
referred to with the acronym POMDP for partially observed Markovian
Decision problem).

Generally, solving a POMDP exactly is typically intractable, even
though there are DP algorithms for doing so. Thus in practice, POMDP
are solved approximately, except under very special circumstances.

Despite their inherent computational difficulty, it turns out that con-
ceptually, partial state information problems are no different than the per-
fect state information problems we have been addressing so far. In fact by
various reformulations, we can reduce a partial state information problem
to one with perfect state information, which involves a different and more
complicated state, called a sufficient statistic. Once this is done, we can
state an exact DP algorithm that is defined over the space of the sufficient
statistic. Roughly speaking, a sufficient statistic is a quantity that sum-
marizes the content of the information available up to k for the purposes
of optimal control. This statement can be made more precise, but we will
not elaborate further in this book; see e.g., the DP textbook [Ber17a].

A common sufficient statistic is the belief state, which we will denote
by bi. It is the probability distribution of xj, given all the observations that
have been obtained by the controller and all the controls applied by the
controller up to time k, and it can serve as “state” in an appropriate DP
algorithm. The belief state can in principle be computed and updated by a
variety of methods that are based on Bayes’ rule, such as Kalman filtering
(see e.g., [AnM79], [KuV86], [Kril6], [ChC17]) and particle filtering (see
e.g., [GSS93], [DoJ09], [Canl6], [Kril6]).

Example 1.6.4 (Bidirectional Parking)

Let us consider a more complex version of the parking problem of Example
1.6.1. As in that example, a driver is looking for inexpensive parking on the
way to his destination, along a line of N parking spaces with a garage at the
end. The difference is that the driver can move in either direction, rather
than just forward towards the garage. In particular, at space ¢, the driver
can park at cost ¢(7) if 4 is free, can move to i — 1 at a cost ¢; or can move to
i+1 at a cost t]. Moreover, the driver records and remembers the free/taken
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Parking Spaces
Termination State

Figure 1.6.6 Cost structure and transitions of the bidirectional parking problem.
The driver may park at space k =0,1,..., N — 1 at cost ¢(k), if the space is free,
can move to k — 1 at cost ¢, or can move to k + 1 at cost t:. At space N (the
garage) the driver must park at cost C.

status of the spaces previously visited and may return to any of these spaces;
see Fig. 1.6.6.

We assume that the probability p(i) of a space ¢ being free changes over
time, i.e., a space found free (or taken) at a given visit may get taken (or
become free, respectively) by the time of the next visit. The initial prob-
abilities p(i), before visiting any spaces, are known, and the mechanism by
which these probabilities change over time is also known to the driver. As an
example, we may assume that at each time stage, p(i) increases by a certain
known factor with some probability £ and decreases by another known factor
with the complementary probability 1 — €.

Here the belief state is the vector of current probabilities

(p(0)7 cee 7p(N - 1))7

and it can be updated with a simple algorithm at each time based on the new
observation: the free/taken status of the space visited at that time.

We can use the belief state as the basis of an exact DP algorithm
for computing an optimal policy. This algorithm is typically intractable
computationally, but it is conceptually useful, and it can form the starting
point for approximations. It has the form

Jg(bk) = mlg gk(bk’uk)+Ezk+1{JZ+l (Fk(bk,uk,zk+1)) | bk,uk}},

upeUy
(1.73)
where:

J;, (by;) denotes the optimal cost-to-go starting from belief state by at
stage k.

Uy is the control constraint set at time k (since the state zj is un-
known at stage k, U must be independent of xy).

3k (b, ug) denotes the expected stage cost of stage k. It is calculated
as the expected value of the stage cost gi(z, uk, wy), with the joint
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Figure 1.6.7 Schematic illustration of the view of an imperfect state information
problem as one of perfect state information, whose state is the belief state by, i.e.,
the conditional probability distribution of x;, given all the observations up to time
k. The observation zj 1 plays the role of the stochastic disturbance. The function
F}, is a sequential estimator that updates the current belief state by.

distribution of (x,wy) determined by the belief state by and the
distribution of wy,.

F (bg, uk, zp+1) denotes the belief state at the next stage, given that
the current belief state is by, control uy is applied, and observation
zk+1 is received following the application of wg:

bk+1 = Fk(bk,uk,ZkJrl). (174)

This is the system equation for a perfect state information problem
with state bg, control ug, “disturbance” zpyi, and cost per stage
3k (b, ug). The function Fy, is viewed as a sequential belief estimator,
which updates the current belief state by based on the new observation
zk+1. It is given by either an explicit formula or an algorithm (such as
Kalman filtering or particle filtering) that is based on the probability
distribution of zj; and the use of Bayes’ rule.

The expected value E.,  {- | bk, ur} is taken with respect to the
distribution of zj41, given by and uy. Note that 2z is random, and
its distribution depends on x; and wuy, so the expected value

E.py {JZH (Fr(bk, uk, 2541)) | brs Uk}

in Eq. (1.73) is a function of b, and wy.

The algorithm (1.73) is just the ordinary DP algorithm for the perfect
state information problem shown in Fig. 1.6.7. It involves the system/belief
estimator (1.74) and the cost per stage g (br, ur). Note that since by, takes
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values in a continuous space, the algorithm (1.73) will typically require an
approximate implementation, using approximation in value space methods.

We refer to the textbook [Ber17a], Chapter 4, for a detailed derivation
of the DP algorithm (1.73), and to the monograph [BeS78] for a mathe-
matical treatment that applies to infinite-dimensional state and disturbance
spaces as well.

An Alternative DP Algorithm for POMDP

The DP algorithm (1.73) is not the only one that can be used for POMDP.
There is also an exact DP algorithm that operates in the space of informa-
tion vectors I, defined by

I, = {z0,u0, ..., Zk—1,Uk—1, 2k},

where z;, is the observation received at time k. This is another sufficient
statistic, and hence an alternative to the belief state by. In particular, we
can view I as a state of the POMDP, which evolves over time according
to the equation

Iit1 = (Ik, 21, Ui).

Denoting by J;(Ii) the optimal cost starting at information vector I, at
time k, the DP algorithm takes the form

Ji(Ik) = Dgl]in Ewk,zk+1{gk($kaukawk)+

J]:J’_l (Ikaszrlauk) | Ikauk}v

for k =0,...,N — 1, with J5(In) = E{gn(zn) | In}; see e.g., the DP
textbook [Ber17al, Section 4.1.

A drawback of the preceding approach is that the information vector
I is growing in size over time, thereby leading to a nonstationary system
even in the case of an infinite horizon problem with a stationary system and
cost function. This difficulty can be remedied in an approximation scheme
that uses a finite history of the system (a fixed number of most recent
observations) as state, thereby working effectively with a stationary finite-
state system; see the paper by White and Scherer [WhS94]. In particular,
this approach is used in large language models such as ChatGPT.

Finite-memory approximations for POMDP can be viewed within the
context of feature-based approximation architectures, as we will discuss in
Chapter 3 (see Example 3.1.6). Moreover, the finite-history scheme can be
generalized through the concept of a finite-state controller; see the paper
by Yu and Bertsekas [YuBO08], which also addresses the issue of convergence
of the approximation error to zero as the size of the finite-history or finite-
state controller is increased.
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1.6.7 Multiagent Problems and Multiagent Rollout

In this book, we will view a multiagent system as a collection of decision
making entities, called agents, which aim to optimally achieve a common
goal.t The agents accomplish this by collecting and exchanging informa-
tion, and otherwise interacting with each other. The agents can be software
programs or physical entities such as robots, and they may have different
capabilities.

Among the generic challenges of efficient implementation of multia-
gent systems, one may note issues of limited communication and lack of
fully shared information, due to factors such as limited bandwidth, noisy
channels, and lack of synchronization. Another important generic issue
is that as the number of agents increases, the size of the set of possible
joint decisions of the agents increases exponentially, thereby complicating
control selection by lookahead minimization. In this section, we will focus
on ways to resolve this latter difficulty for problems where the agents fully
share information, and in Section 2.9 we will address some of the challenges
of problems where the agents may have some autonomy, and act without
fully coordinating with each other.

For a mathematical formulation, let us consider the discounted infinite
horizon problem and a special structure of the control space, whereby the
control u consists of m components, u = (ul,...,u™), with a separable
control constraint structure uf € Uf(x), £ = 1,...,m. Thus the control
constraint set is the Cartesian product

Ulz) = Ul(x) x - x Um(x), (1.76)

where the sets U¢(z) are given. This structure arises in applications in-
volving distributed decision making by multiple agents; see Fig. 1.6.8.

In particular, we will view each component u¢, £ = 1,...,m, as being
chosen from within Uf(x) by a separate “agent” (a decision making entity).
For the sake of the following discussion, we assume that each set Uf(x) is
finite. Then the one-step lookahead minimization of the standard rollout
scheme with base policy u is given by

4 € arg min Ew{g(ac,u,w)—i—aJM(f(:v,u,w))}, (1.77)
ueU(x)

and involves as many as n™ Q-factors, where n is the maximum number of
elements of the sets U(x) [so that n™ is an upper bound to the number of
controls in U(z), in view of its Cartesian product structure (1.76)]. Thus
the standard rollout algorithm requires an exponential [order O(n™)] num-
ber of Q-factor computations per stage, which can be overwhelming even
for moderate values of m.

1 In a more general version of a multiagent system, which is outside our
scope, the agents may have different goals, and act in their own self-interest.
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Environment
Computing Cloud

Figure 1.6.8 Schematic illustration of a multiagent problem. There are multiple
“agents,” and each agent ¢ = 1,...,m controls its own decision variable uf. At
each stage, agents exchange new information and also exchange information with
the “environment,” and then select their decision variables for the stage.

This potentially large computational overhead motivates a far more
computationally efficient rollout algorithm, whereby the one-step lookahead
minimization (1.77) is replaced by a sequence of m successive minimiza-
tions, one-agent-at-a-time, with the results incorporated into the subse-
quent minimizations. In particular, given a base policy u = (ut,..., u™),
we perform at state x the sequence of minimizations

fil(z) € arg s Ew{g(w, ul, p2(x), .. (), w)

+ aJ#(f(x,ul,IuQ(x), . ,,um(:zr),w))},

Q%I)6?HgﬂgggﬂyEw{g@%ﬂWI%UQ#ﬁCﬂ-~aumﬂw7w)

@ (f (@, i @), 02, 13 (@), . i (@), w))

ﬂm(x) € arg H%}n( )Ew{g(l',/jl (l’),/jz(.’ﬂ), ce 7ﬂm_1($)7 u™, ’U})
umecUm (x

+ady (f (@, it (2), fi2(x), . .. =t (), um, w))}.

Thus each agent component u is obtained by a minimization with the pre-
ceding agent components ul, ..., uf~! fixed at the previously computed val-
ues of the rollout policy, and the following agent components uf+1, ... u™
fixed at the values given by the base policy. This algorithm requires order
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Control u™
Random Transition
z= f(I, U, ’ll))

Random Cost
g(m, u’ w)

Figure 1.6.9 Equivalent formulation of the stochastic optimal control problem
for the case where the control u consists of m components u!,u?, ..., u™:

w=(ul,...,u™) € U(x) =Uz) x --- x U™ ().

The figure depicts the kth stage transitions. Starting from state x, we generate
the intermediate states

(x7u1)7(x7u17u2)7"'7(x7u17' "7um71)7

using the respective controls ul,...,u™ 1. The final control u™ leads from

(z,ul,...,u™ 1) to = f(x,u,w), and the random cost g(z,u,w) is incurred.

O(nm) Q-factor computations per stage, a potentially huge computational
saving over the order O(n™) computations required by standard rollout.

A key idea here is that the computational requirements of the rollout
one-step minimization (1.77) are proportional to the number of controls
in the set U(z) and are independent of the size of the state space. This
motivates a reformulation of the problem, first suggested in the neuro-
dynamic programming book [BeT96], Section 6.1.4, whereby control space
complezity is traded off with state space complexity, by “unfolding” the
control uy into its m components, which are applied one agent-at-a-time
rather than all-agents-at-once.

In particular, we can reformulate the problem by breaking down the
collective decision uy into m individual component decisions, thereby re-
ducing the complexity of the control space while increasing the complexity
of the state space. The potential advantage is that the extra state space
complexity does not affect the computational requirements of some RL al-
gorithms, including rollout.

To this end, we introduce a modified but equivalent problem, involv-
ing one-at-a-time agent control selection. At a state z, we break down
the control u into the sequence of the m controls ul,u2,... u™, and be-
tween z and the next state T = f(x,u,w), we introduce artificial inter-
mediate “states” (z,ul), (x,ul,u?),..., (x,ul,...,um"1) and correspond-
ing transitions. The choice of the last control component u™ at “state”
(z,ul,...,um~1) marks the transition to the next state & = f(z,u,w),
while incurring cost g(z,u, w); see Fig. 1.6.9.

It is evident that this reformulated problem is equivalent to the origi-
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nal, since any control choice that is possible in one problem is also possible
in the other problem, while the cost structure of the two problems is the
same. In particular, every policy u = (ul, ..., u™) of the original problem,
including a base policy in the context of rollout, is admissible for the refor-
mulated problem, and has the same cost function for the original as well
as the reformulated problem.

The motivation for the reformulated problem is that the control space
is simplified at the expense of introducing m — 1 additional layers of states,
and the corresponding m — 1 cost-to-go functions

J(z,ul), J2(x,ul u?),. . I el L ume ),

The increase in size of the state space does not adversely affect the opera-
tion of rollout, since the Q-factor minimization (1.77) is performed for just
one state at each stage.

The major fact that can be proved about multiagent rollout (see Sec-
tion 2.9 and the end-of-chapter references) is that it achieves cost improve-
ment:

Ji(x) < Ju(z), for all x,

where J,(x) is the cost function of the base policy u = (p!,..., ™), and
Ji(x) is the cost function of the rollout policy i = (fil,..., ™), starting
from state z. Furthermore, this cost improvement property can be ex-
tended to multiagent PI schemes that involve one-agent-at-a-time policy
improvement operations, and have sound convergence properties. More-
over, multiagent rollout becomes the starting point for related PI schemes
that are well suited for distributed operation in contexts involving multiple
autonomous decision makers; see Section 2.9, the book [Ber20a], the papers
[Ber20b] and [BKB20], and the tutorial survey [Ber21a).

Example 1.6.5 (Spiders and Flies)

This example is representative of a broad range of practical problems such as
multirobot service systems involving delivery, maintenance and repair, search
and rescue, firefighting, etc. Here there are m spiders and several flies moving
on a 2-dimensional grid; cf. Fig. 1.6.10. The objective is for the spiders to
catch all the flies as fast as possible.

During a stage, each fly moves to a some other position according to a
given state-dependent probability distribution. Each spider learns the current
state (the vector of spiders and fly locations) at the beginning of each stage,
and either moves to a neighboring location or stays where it is. Thus each

spider has as many as 5 choices at each stage. The control is u = (ul7 conu™),
where u is the choice of the £th spider, so there are about 5™ possible values
of u.

To apply multiagent rollout, we need a base policy. A simple possibility
is to use the policy that directs each spider to move on the path of minimum
distance to the closest fly position. According to the multiagent rollout for-
malism, the spiders choose their moves one-at-time in the order from 1 to m,
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Figure 1.6.10 Illustration of a 2-dimensional spiders-and-fly problem with 20
spiders and 5 flies (cf. Example 1.6.5). The flies moves randomly, regardless of
the position of the spiders. During a stage, each spider moves to a neighboring
location or stays where it is, so there are 5 moves per spider (except for spiders
at the edges of the grid). The total number of possible joint spiders moves is a
little less than 520.

taking into account the current positions of the flies and the earlier moves
of other spiders, and assuming that future moves will be chosen according to
the base policy, which is a tractable computation.

In particular, at the beginning at the typical stage, spider 1 selects
its best move (out of the no more than 5 possible moves), assuming the
other spiders 2, ..., m will move towards their closest surviving fly during the
current stage, and all spiders will move towards their closest surviving fly
during the following stages, up to the time where no surviving flies remain.
Spider 1 then broadcasts its selected move to all other spiders. Then spider
2 selects its move taking into account the move already chosen by spider 1,
and assuming that spiders 3, ..., m will move towards their closest surviving
fly during the current stage, and all spiders will move towards their closest
surviving fly during the following stages, up to the time where no surviving
flies remain. Spider 2 then broadcasts its choice to all other spiders. This
process of one-spider-at-a-time move selection is repeated for the remaining
spiders 3,...,m, marking the end of the stage.

Note that while standard rollout computes and compares 5™ Q-factors
(actually a little less to take into account edge effects), multiagent rollout
computes and compares < 5 moves per spider, for a total of less than 5m.
Despite this tremendous computational economy, experiments with this type
of spiders and flies problems have shown that multiagent rollout achieves a
comparable performance to the one of standard rollout.
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1.6.8 Problems with Unknown Parameters - Adaptive Control

Our discussion so far dealt with problems with a known mathematical
model, i.e., one where the system equation, cost function, control con-
straints, and probability distributions of disturbances are perfectly known.
The mathematical model may be available through explicit mathematical
formulas and assumptions, or through a computer program that can em-
ulate all of the mathematical operations involved in the model, including
Monte Carlo simulation for the calculation of expected values.

It is important to note here that from our point of view, it makes no
difference whether the mathematical model is available through closed form
mathematical expressions or through a computer simulator: the methods
that we discuss are valid either way, only their suitability for a given prob-
lem may be affected by the availability of mathematical formulas.

In practice, however, it is common that the system parameters are
either not known exactly or can change over time, and this introduces
potentially enormous complications.t As an example consider our oversim-
plified cruise control system that we noted in Example 1.3.1 or its infinite
horizon version. The state evolves according to

Tyl = T + bug + wy, (1.78)

where z, is the deviation v — v of the vehicle’s velocity v from the nominal
U, ug is the force that propels the car forward, and wy, is the disturbance
that has nonzero mean. However, the coefficient b and the distribution of
wg change frequently, and cannot be modeled with any precision because
they depend on unpredictable time-varying conditions, such as the slope
and condition of the road, and the weight of the car (which is affected by
the number of passengers). Moreover, the nominal velocity o is set by the
driver, and when it changes it may affect the parameter b in the system
equation, and other parameters.I

In this section, we will briefly review some of the most commonly used
approaches for dealing with unknown parameters in optimal control theory
and practice. We should note also that unknown problem environments are

1 The difficulties of decision and control within a changing environment are
often underestimated. Among others, they complicate the balance between off-
line training and on-line play, which we discussed in Section 1.1 in connection
the AlphaZero. It is worth keeping in mind that as much as learning to play
high quality chess is a great challenge, the rules of play are stable and do not
change unpredictably in the middle of a game! Problems with changing system
parameters can be far more challenging!

I Adaptive cruise control, which can also adapt the car’s velocity based on its
proximity to other cars, has been studied extensively and has been incorporated
in several commercially sold car models.
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an integral part of the artificial intelligence view of RL. In particular, to
quote from the popular book by Sutton and Barto [SuB18], RL is viewed
as “a computational approach to learning from interaction,” and “learning
from interaction with the environment is a foundational idea underlying
nearly all theories of learning and intelligence.”

The idea of learning from interaction with the environment is often
connected with the idea of exploring the environment to identify its char-
acteristics. In control theory this is often viewed as part of the system
identification methodology, which aims to construct mathematical models
of dynamic systems. The system identification process is often combined
with the control process to deal with unknown or changing problem pa-
rameters, in a framework that is sometimes called dual control. This is one
of the most challenging areas of stochastic optimal and suboptimal control,
and has been studied intensively since the early 1960s.

Robust and Adaptive Control

Given a controller design that has been obtained assuming a nominal DP
problem model, one possibility is to simply ignore changes in problem pa-
rameters. We may then try to investigate the performance of the current
design for a suitable range of problem parameter values, and ensure that it
is adequate for the entire range. This is sometimes called a robust controller
design. For example, consider the oversimplified cruise control system of
Eq. (1.78) with a linear controller of the form p(x) = Lz for some scalar L.
Then we check the range of parameters b for which the current controller
is stable (this is the interval of values b for which |1 +bL| < 1), and ensure
that b remains within that range during the system’s operation.

The more general class of methods where the controller is modified in
response to problem parameter changes is part of a broad field known as
adaptive control, i.e., control that adapts to changing parameters. This is
a rich methodology with many and diverse applications. Our discussion of
adaptive control in this book will be limited. Let us just mention for the
moment a simple time-honored adaptive control approach for continuous-
state problems called PID (Proportional-Integral-Derivative) control, for
which we refer to the control literature, including the books by Astrém and
Hagglund [AsH95], [AsHO6], and the end-of-chapter references on adaptive
control (also the discussion in Section 5.7 of the RL textbook [Ber19al).

In particular, PID control aims to maintain the output of a single-
input single-output dynamic system around a set point or to follow a given
trajectory, as the system parameters change within a relatively broad range.
In its simplest form, the PID controller is parametrized by three scalar pa-
rameters, which may be determined by a variety of methods, some of them
manual/heuristic. PID control is used widely and with success, although
its range of application is mainly restricted to single-input, single-output
continuous-state control systems.
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Figure 1.6.11 Schematic illustration of concurrent parameter estimation and
system control. The system parameters are estimated on-line and the estimates
are periodically passed on to the controller.

Dealing with Unknown Parameters Through System Identification

In PID control, no attempt is made to maintain a mathematical model and
to track unknown model parameters as they change. An alternative and
apparently reasonable form of suboptimal control is to separate the control
process into two phases, a system identification phase and a control phase.
In the first phase the unknown parameters are estimated, while the control
takes no account of the interim results of estimation. The final parameter
estimates from the first phase are then used to implement an optimal or
suboptimal policy in the second phase. This alternation of estimation and
control phases may be repeated several times during any system run in
order to take into account subsequent changes of the parameters. Moreover,
it is not necessary to introduce a hard separation between the identification
and the control phases. They may be going on simultaneously, with new
parameter estimates being introduced into the control process, whenever
this is thought to be desirable; see Fig. 1.6.11.

One drawback of this approach is that it is not always easy to deter-
mine when to terminate one phase and start the other. A second difficulty,
of a more fundamental nature, is that the control process may make some
of the unknown parameters invisible to the estimation process. This is
known as the problem of parameter identifiability, which is discussed in
the context of optimal control in several sources, including [BoV79] and
[Kum83]J; see also [Berl7a], Section 6.7.

Example 1.6.6 (Parameter Identifiability Under Closed-Loop
Control)

For a simple example, consider the scalar system

Tr4+1 = aTk + bug, k=0,...,N—1,
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and the quadratic cost

> @)

N
k=1

Assuming perfect state information, if the parameters a and b are known, it
can be seen that the optimal control law is

« a
p(Tr) = _Exk’

which sets all future states to 0. Assume now that the parameters a and b
are unknown, and consider the two-phase method. During the first phase the
control law

fik (Tk) = yTK (1.79)

is used (v is some scalar; for example, v = —%, where @ and b are some a
priori estimates of a and b, respectively). At the end of the first phase, the
control law is changed to

where @ and b are the estimates obtained from the estimation process. How-
ever, with the control law (1.79), the closed-loop system is

Trt1 = (a+ by)wx,

so the estimation process can at best yield the value of (a + by) but not
the values of both a and b. In other words, the estimation process cannot
discriminate between pairs of values (a1, b1) and (a2, b2) such that

a1+ b1y = a2 + bay.

Therefore, a and b are not identifiable when feedback control of the form
(1.79) is applied.

On-line parameter estimation algorithms, which address among oth-
ers the issue of identifiability, have been discussed extensively in the control
theory literature, but the corresponding methodology is complex and be-
yond our scope in this book. However, assuming that we can make the
estimation phase work somehow, we are free to revise the controller using
the newly estimated parameters in a variety of ways, in an on-line replan-
ning process.

Unfortunately, there is still another difficulty with this type of on-
line replanning: it may be hard to recompute an optimal or near-optimal
policy on-line, using a newly identified system model. In particular, it may
be impossible to use time-consuming methods that involve for example
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the training of a neural network or discrete/integer control constraints. A
simpler possibility is to use rollout, which we discuss next.}

Adaptive Control by Rollout and On-Line Replanning

We will now consider an approach for dealing with unknown or changing
parameters, which is based on on-line replanning. We have discussed this
approach in the context of rollout and multiagent rollout, where we stressed
the importance of fast on-line policy improvement.

Let us assume that some problem parameters change and the current
controller becomes aware of the change “instantly” (i.e., very quickly be-
fore the next stage begins). The method by which the problem parameters
are recalculated or become known is immaterial for the purposes of the fol-
lowing discussion. It may involve a limited form of parameter estimation,
whereby the unknown parameters are “tracked” by data collection over a
few time stages, with due attention paid to issues of parameter identifi-
ability; or it may involve new features of the control environment, such
as a changing number of servers and/or tasks in a service system (think
of new spiders and/or flies appearing or disappearing unexpectedly in the
spiders-and-flies Example 1.6.5).

We thus assume away /ignore issues of parameter estimation, and fo-
cus on revising the controller by on-line replanning based on the newly ob-
tained parameters. This revision may be based on any suboptimal method,
but rollout with the current policy used as the base policy is particularly
attractive. Here the advantage of rollout is that it is simple and reliable.
In particular, it does not require a complicated training procedure to re-
vise the current policy, based for example on the use of neural networks or
other approximation architectures, so no new policy is explicitly computed
in response to the parameter changes. Instead the current policy is used as
the base policy for rollout, and the available controls at the current state
are compared by a one-step or mutistep minimization, with cost function
approximation provided by the base policy (cf. Fig. 1.6.12).

Note that over time the base policy may also be revised (on the basis
of an unspecified rationale), in which case the rollout policy will be revised
both in response to the changed current policy and in response to the

T Another possibility is to deal with this difficulty by precomputation. In
particular, assume that the set of problem parameters may take a known finite
set of values (for example each set of parameter values may correspond to a
distinct maneuver of a vehicle, motion of a robotic arm, flying regime of an
aircraft, etc). Then we may precompute a separate controller for each of these
values. Once the control scheme detects a change in problem parameters, it
switches to the corresponding predesigned current controller. This is sometimes
called a multiple model control design or gain scheduling, and has been applied
with success in various settings over the years.
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Figure 1.6.12 Schematic illustration of adaptive control by rollout. One-step
lookahead is followed by simulation with the base policy, which stays fixed. The
system, cost, and constraint parameters are changing over time, and the most
recent values are incorporated into the lookahead minimization and rollout oper-
ations. For the discussion in this section, we may assume that all the changing
parameter information is provided by some computation and sensor “cloud” that
is beyond our control. The base policy may also be revised based on various
criteria.

changing parameters. This is necessary in particular when the constraints
of the problem change.

The principal requirement for using rollout in an adaptive control
context is that the rollout control computation should be fast enough to
be performed between stages. Note, however, that accelerated/truncated
versions of rollout, as well as parallel computation, can be used to meet
this time constraint.

The following example considers on-line replanning with the use of
rollout in the context of the simple one-dimensional linear quadratic prob-
lem that we discussed earlier in this chapter. The purpose of the example
is to illustrate analytically how rollout with a policy that is optimal for a
nominal set of problem parameters works well when the parameters change
from their nominal values. This property is not practically useful in linear
quadratic problems because when the parameter change, it is possible to
calculate the new optimal policy in closed form, but it is indicative of the
performance robustness of rollout in other contexts. Generally, adaptive
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control by rollout and on-line replanning makes sense in situations where
the calculation of the rollout controls for a given set of problem parameters
is faster and/or more convenient than the calculation of the optimal con-
trols for the same set of parameter values. These problems include cases
involving nonlinear systems and/or difficult (e.g., integer) constraints.

Example 1.6.7 (On-Line Replanning for Linear Quadratic
Problems Based on Rollout)

Consider the deterministic undiscounted infinite horizon linear quadratic prob-
lem. It involves the linear system

Thy1 = Tg + buy,

and the quadratic cost function
N-1
lim (z} + rup).

N— oo
k=0

The optimal cost function is given by
J*(x) = K*2°,

where K™ is the unique positive solution of the Riccati equation

= —% J:I;K +1. (1.80)
The optimal policy has the form

p(z) =Lz, (1.81)
where .

g —beLzK*. (1.82)

As an example, consider the optimal policy that corresponds to the
nominal problem parameters b = 2 and r = 0.5: this is the policy (1.81)-
(1.82), with K obtained as the positive solution of the quadratic Riccati Eq.
(1.80) for b =2 and r = 0.5. In particular, we can verify that

=220
4
From Eq. (1.82) we then obtain
_ 2+6

(1.83)

5+2v6
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We will now consider changes of the values of b and r while keeping L constant,
and we will compare the quadratic cost coefficient of the following three cost
functions as b and r vary:

(a) The optimal cost function K*x?, where K* is given by the positive
solution of the Riccati Eq. (1.80).

(b) The cost function Kpx? that corresponds to the base policy
122 (:C) = Luz,
where L is given by Eq. (1.83). From our earlier discussion, we have

14 rL?

Kp=—"1"2
T+l

(¢) The cost function Krz? that corresponds to the rollout policy
Br (:C) = z/x7

obtained by using the policy p; as base policy. Using the formulas
given earlier, we have

~ bKr,
L=————"—
r+ 2K’
and .
iy = ttrl”
1—(1+5bL)2

Figure 1.6.13 shows the coefficients K*, Ky, and f(L for a range of
values of r and b. We have

K*<Kp<Kj.

The difference K, — K™ is indicative of the robustness of the policy ur, i.e., the
performance loss incurred by ignoring the values of b and r, and continuing
to use the policy pr, which is optimal for the nominal values b = 2 and
r = 0.5, but suboptimal for other values of b and . The difference K1 — K* is
indicative of the performance loss due to using on-line replanning by rollout
rather than using optimal replanning. Finally, the difference K — Kp is
indicative of the performance improvement due to on-line replanning using
rollout rather than keeping the policy pr unchanged.
Note that Fig. 1.6.13 illustrates the behavior of the error ratio

J—J*
J—J*

where for a given initial state, J is the rollout performance, J* is the optimal
performance, and J is the base policy performance. This ratio approaches
0 as J — J* becomes smaller because of the quadratic convergence rate of
Newton’s method that underlies the rollout algorithm.
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Figure 1.6.13 Illustration of adaptive control by rollout under changing
problem parameters. The quadratic cost coefficients K* (optimal, denoted
by solid line), K, (base policy, denoted by circles), and Ky, (rollout policy,
denoted by asterisks) for the two cases where r = 0.5 and b varies, and b = 2
and r varies. The value of L is fixed at the value that is optimal for b = 2 and
r =0.5 [cf. Eq. (1.83)].

The rollout policy performance is very close to the one of the exactly
reoptimized policy, while the base policy yields much worse performance. This
is a consequence of the quadratic convergence rate of Newton’s method that
underlies rollout: B

*
fim 222 0,
JoJgx J = J*

where for a given initial state, J is the rollout performance, J* is the optimal
performance, and J is the base policy performance.
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Adaptive Control as POMDP

The preceding adaptive control formulation strictly separates the dual ob-
jective of estimation and control: first parameter identification and then
controller reoptimization (either exact or rollout-based). In an alternative
adaptive control formulation, the parameter estimation and the applica-
tion of control are done simultaneously, and indeed part of the control
effort may be directed towards improving the quality of future estimation.
This alternative (and more principled) approach is based on a view of adap-
tive control as a partially observed Markovian decision problem (POMDP)
with a special structure. We will see in Section 2.11 that this approach is
well-suited for approximation in value space schemes, including forms of
rollout.

To describe briefly the adaptive control reformulation as POMDP, we
introduce a system whose state consists of two components:

(a) A perfectly observed component xj, that evolves over time according
to a discrete-time equation.

(b) A component 6 which is unobserved but stays constant, and is esti-
mated through the perfect observations of the component zy.

We view 6 as a parameter in the system equation that governs the evolution
of z. Thus we have

Thy1 = fr(zr, 0, up, wy), (1.84)

where uy, is the control at time k, selected from a set Ug(zy), and wy, is
a random disturbance with given probability distribution that depends on
(zk, 0, ur). For convenience, we will assume that 6 can take one of m known
values 61,... 6m.

The a priori probability distribution of 8 is given and is updated based
on the observed values of the state components z; and the applied controls
ug. In particular, the information vector

I, = {zo,...,xk,u0, ..., Up—1}
is available at time k, and is used to compute the conditional probabilities
br: = P{0=0"| I}, i=1,...,m.
These probabilities form a vector
b = bk, Dkm)s

which together with the perfectly observed state xy, form the pair (xy, by),
which is the belief state of the POMDP at time k. The overall control
scheme takes the form illustrated in Fig. 1.6.14.



Sec. 1.6 Examples, Reformulations, and Simplifications 117
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Figure 1.6.14 Schematic illustration of simultaneous control and belief estima-
tion for the unknown system parameter 6. The control applied is a function of the
current belief state (zy,bg), where by is the conditional probability distribution
of 6 given the observations accumulated up to time k (the current and past states
Zk,...,20, and the past controls ug_1,...,uo).

As discussed in Section 1.6.4, an exact DP algorithm can be written
for the equivalent POMDP, and this algorithm is suitable for the use of
approximation in value space and rollout. We will describe this approach
in some detail in Section 2.11. Related ideas will also be discussed in the
context of Bayesian estimation and sequential estimation in Section 2.10.

Note that the case of a deterministic system

Th1 = fu(zr, 0, ur),

is particularly interesting, because we can then typically expect that the
true parameter §* will be identified in a finite number of stages. The reason
is that at each stage k, we are receiving a noiseless observation relating to 6,
namely the state xx. Once the true parameter 6* is identified, the problem
becomes one of perfect state information.

1.6.9 Model Predictive Control

In this section, we will provide a brief summary of the model predictive
control (MPC) methodology for control system design, with a view towards
its connection with approximation in value space and rollout schemes. We
will focus on classical control problems, where the objective is to keep the
state of a deterministic system close to the origin of the state space (see
Fig. 1.6.15). Another type of classical control problem is to keep the system

T An extensive overview of the connections of the conceptual framework of
this book with model predictive and adaptive control is given in the author’s
paper [Ber24]. The corresponding video is a good supplement to the present
section and can be found at https://www.youtube.com/watch?v=UeVs0Op-Ui4d
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REGULATION PROBLEM
i Keep the state near some given point
Traditionally 0 (the origin)
6=0,0=0

Figure 1.6.15 Illustration of a classical regulation problem, known as the “cart-
pole problem” or “inverse pendulum problem.” The state is the two-dimensional
vector of angular position and angular velocity. We aim to keep the pole at the

upright position (state equal to 0) by exerting horizontal force u on the cart.

close to a given trajectory (see Fig. 1.6.16). It can also be treated by forms
of MPC, but will not be discussed in this book.

We discussed earlier the linear quadratic approach, whereby the sys-

tem is represented by a linear model, the cost is quadratic in the state
and the control, and there are no state and control constraints. The linear
quadratic and other approaches based on state variable system representa-
tions and optimal control became popular, starting in the late 50s and early
60s. Unfortunately, however, the analytically convenient linear quadratic
problem formulations are often not satisfactory. There are two main rea-
sons for this:

(a)

The system may be nonlinear, and it may be inappropriate to use for
control purposes a model that is linearized around the desired point or
trajectory. Moreover, some of the control variables may be naturally
discrete, and this is incompatible with the linear system viewpoint.

There may be control and/or state constraints, which are not handled
adequately through quadratic penalty terms in the cost function. For
example, the motion of a car may be constrained by the presence of
obstacles and hardware limitations (see Fig. 1.6.16). The solution
obtained from a linear quadratic model may not be suitable for such
a problem, because quadratic penalties treat constraints “softly” and
may produce trajectories that violate the constraints.

These inadequacies of the linear quadratic formulation have moti-

vated MPC, which combines elements of several ideas that we have dis-
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Figure 1.6.16 Illustration of constrained motion of a car from point A to point
B. There are state (position/velocity) constraints, and control (acceleration) con-
straints. When there are mobile obstacles, the state constraints may change
unpredictably, necessitating on-line replanning.

cussed so far, such as multistep lookahead, rollout with a base policy, and
certainty equivalence. Aside from dealing adequately with state and con-
trol constraints, MPC is well-suited for on-line replanning, like all rollout
methods.

Note that the ideas of MPC were developed independently of the
approximate DP/RL methodology. However, the two fields are closely re-
lated, and there is much to be gained from understanding one field within
the context of the other, as the subsequent development will aim to show.
A major difference between MPC and finite-state stochastic control prob-
lems that are popular in the RL/artificial intelligence literature is that
in MPC the state and control spaces are continuous/infinite, such as for
example in self-driving cars, the control of aircraft and drones, or the op-
eration of chemical processes. At the same time, at a fundamental level,
this difference turns out to be inconsequential, because the key underlying
framework for approximation in value space, which is based on Newton’s
method, is valid for both discrete and continuous state and control spaces.

In this section, we will primarily focus on the undiscounted infinite
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horizon deterministic problem, which involves the system

Tpy1 = [(@p, uk),

whose state xj and control uj are finite-dimensional vectors. The cost per
stage is assumed nonnegative

g(xk,ug) > 0, for all (xg, ug),

(e.g., a positive definite quadratic cost). There are control constraints uy, €
U(zk), and to simplify the following discussion, we will initially consider
no state constraints. We assume that the system can be kept at the origin
at zero cost, i.e.,

f(0,u,) =0, g(0,u,) =0 for some control uy € U(0).

For a given initial state 2, we want to obtain a sequence {ug, u1, ...} that
satisfies the control constraints, while minimizing the total cost.

This is a classical problem in control system design, known as the
requlation problem, where the aim is to keep the state of the system near the
origin (or more generally some desired set point), in the face of disturbances
and/or parameter changes. In an important variant of the problem, there
are additional state constraints of the form x; € X, and there arises the
issue of maintaining the state within X, not just at the present time but
also in future times. We will address this issue later in this section.

The Classical Form of MPC - View as a Rollout Algorithm

We will first focus on a classical form of the MPC algorithm, proposed in
the form given here by Keerthi and Gilbert [KeG88]. In this algorithm,
at each encountered state xy, we apply a control @ that is computed as
follows; see Fig. 1.6.17:

(a) We solve an {-stage optimal control problem involving the same cost
function and the requirement that the state after ¢ steps is driven to
0, i.e., zx4+¢ = 0. This is the problem
k+e—1
min Z g(xe, ur), (1.85)

ug, t=k,...,k+—1

subject to the system equation constraints
Tt+1 :f(a:t,ut), t:k,,k—Fg—l, (186)
the control constraints

uteU(act), t=k,....k+0¢—1, (187)
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Figure 1.6.17 Illustration of the problem solved by a classical form of MPC at
state xr. We minimize the cost function over the next ¢ stages while imposing
the requirement that x4, = 0. We then apply the first control of the optimizing
sequence. In the context of rollout, the minimization over wuj is the one-step
lookahead, while the minimization over ug1,...,ug4¢—1 that drives x4, to 0
is the base heuristic.

and the terminal state constraint
Lh+o = 0. (1.88)

Here ¢ is an integer with ¢ > 1, which is chosen in some largely
empirical way.

(b) If {Gg,...,Ukte—1} is the optimal control sequence of this problem,
we apply 4y and we discard the other controls g1, ..., Ukto—1-

(c) At the next stage, we repeat this process, once the next state x4 is
revealed.

To make the connection of the preceding MPC algorithm with rollout,
we note that the one-step lookahead function J implicitly used by MPC [cf.
Eq. (1.85)] is the cost function of a certain stable base policy. This is the
policy that drives to 0 the state after £ — 1 stages (not £ stages) and keeps
the state at 0 thereafter, while observing the state and control constraints,
and minimizing the associated (¢—1)-stages cost. This rollout view of MPC
was first discussed in the author’s paper [Ber05]. It is useful for making
a connection with the approximate DP/RL, rollout, and its interpretation
in terms of Newton’s method. In particular, an important consequence is
that the MPC policy is stable, since rollout with a stable base policy can
be shown to yield a stable policy under very general conditions, as we have
noted earlier for the special case of linear quadratic problems in Section
1.5; cf. Fig. 1.5.10.
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Terminal Cost Approximation - Stability Issues

In a common variant of MPC, the requirement of driving the system state
to 0 in £ steps in the ¢-stage MPC problem (1.85), is replaced by a terminal
cost G(zk4¢), which is positive everywhere except at 0. Thus at state zy,
we solve the problem

k+0—1
ut7t:]§;1~1.i~rylk+€—l Glarse) + ; 9z )| (1.89)

instead of problem (1.85) where we require that x4, = 0. This variant can
be viewed as rollout with one-step lookahead, and a base policy, which at
state x11 applies the first control @i;41 of the sequence {41, ..., Urte—1}

that minimizes
k4£—1

Glanre) + Y glwr,u).

t=k+1

On the other hand, this MPC variant can also be viewed as approx-
imation in value space with /-step lookahead minimization and terminal
cost approximation given by G. It can be interpreted in terms of a Newton
step, as illustrated in Fig. 1.5.7 for the case of one-step lookahead, and in
Fig. 1.5.8 for the case of multistep lookahead.

An important question is to choose the terminal cost approximation
so that the resulting MPC controller is stable. Our discussion of Section 1.5
on the region of stability of approximation in value space schemes applies
here. In particular, under the nonnegative cost assumption of this section,
the MPC controller can be proved to be stable if a single value iteration
(VI) starting from G produces a function that takes uniformly smaller
values than G:

uér%]l?z) {g(x,u) + G(f(x,u))} < G(z), for all . (1.90)

Figure 1.6.18 provides a graphical illustration. It shows that this condi-
tion guarantees that successive iterates of value iteration, as implemented
through multistep lookahead, lie within the region of stability, so that the
policy produced by MPC is stable.

We also expect that as the length ¢ of the lookahead minimization is
increased, the stability properties of the MPC controller are improved. In
particular, given G > 0, the resulting MPC' controller is likely to be stable
for £ sufficiently large, since the VI algorithm ordinarily converges to J*,
which lies within the region of stability. Results of this type are known
within the MPC framework under various conditions (see the papers by
Mayne at al. [MRR00], Magni et al. [MDMO1], the MPC book [RMD17],
and the author’s book [Ber20a], Section 3.1.2). Our discussion of stability
in Section 1.5 is also relevant within this context; cf. Fig. 1.5.8.
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Figure 1.6.18 Illustration of the Bellman operator, defined by

(TJ)(xz) = min {g(:c,u) + J(f(x,u)) }, for all .

uwelU (x)

The condition in (1.90) can be written compactly as (T'G)(z) < G(z) for all z.
When satisfied by the terminal cost function G, it guarantees stability of the MPC
policy i1 with ¢-step lookahead minimization. In this figure, £ = 3.

In another variant of MPC, in addition to the terminal cost func-
tion approximation GG, we use truncated rollout, which involves running
some stable base policy p for a number of steps m; see Fig. 1.6.19. This
is quite similar to standard truncated rollout, except that the computa-
tional solution of the lookahead minimization problem (1.89) may become
complicated when the control space is infinite. As discussed in Section 1.5,
increasing the length of the truncated rollout enlarges the region of stability
of the MPC' controller. The reason is that by increasing the length of the
truncated rollout, we push the start of the Newton step towards of the cost
function J, of the stable policy, which lies within the region of stability.
The base policy may also be used to address state constraints; see the pa-
pers by Rosolia and Borelli [RoB17], [RoB19], Li et al. [LIJM21], and the
discussions in the author’s RL books [Ber20a], [Ber22a].

Finally, let us note that when faced with changing problem parame-
ters, it is natural to consider on-line replanning as per our earlier adaptive
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Figure 1.6.19 An MPC scheme with ¢-step lookahead minimization, m-step
truncated rollout with a stable base policy u, and a terminal cost function ap-
proximation G, together with its interpretation as a Newton step. In this figure,
¢ =2 and m = 4. The truncated rollout with base policy u consists of m value
iterations with the Bellman operator corresponding to u, which is given by

(1)(@) = 9 (. 0(0) + (£ (1)) ).

Thus, truncated rollout applies m value iterations with base policy u, starting
with the function G and yielding the function T;*G. Then £ — 1 value iterations
are applied to T,'G through the (¢ — 1)-step minimization. Finally, the Newton
step is applied to

TN TG)

to yield the cost function of the MPC policy fi. As m increases, the starting point
for the Newton step moves closer to Jy,, which lies within the region of stability.

control discussion. In this context, once new estimates of system and/or
cost function parameters become available, MPC can adapt accordingly
by introducing the new parameter estimates into the /-stage optimization
problem in (a) above.
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State Constraints, Invariant Sets, and Off-Line Training

Our discussion so far has skirted a major issue in MPC, which is that there
may be additional state constraints of the form x; € X, for all k, where X
is some subset of the true state space. Indeed much of the original work on
MPC was motivated by control problems with state constraints, imposed
by the physics of the problem, which could not be handled effectively with
the nice unconstrained framework of the linear quadratic problem that we
have discussed in Section 1.5.

To deal with additional state constraints of the form x; € X, where
X is some subset of the state space, the MPC problem to be solved at
the kth stage [cf. Eq. (1.89)] must be modified. Assuming that the current
state xp belongs to the constraint set X, the MPC problem should take
the form

k+e—1
o uin Gl + ; gl ur)| (1.91)
subject to the control constraints
up € Ulxy), t=k,...,k+0—-1, (1.92)
and the state constraints
x € X, t=k+1,...,k+ ¢ (1.93)

The control 4y thus obtained will generate a state

Thy1 = f(xp, Uk)

that will belong to X, and similarly the entire state trajectory thus gen-
erated will satisfy the state constraint x; € X for all ¢, assuming that the
initial state does.

However, there is an important difficulty with the preceding MPC
scheme, namely there is no guarantee that the problem (1.91)-(1.93) has a
feasible solution for all initial states x € X. Here is a simple example.

Example 1.6.8 (State Constraints in MPC)
Consider the scalar system
T+1 = 22k + uk,

with control constraint
|uk| S 17

and state constraints of the form z, € X, for all k, where

X = {ax | x| < B} (1.94)
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Figure 1.6.20 Illustration of invariance of a state constraint set X. Here the sets
of the form X = {:ck | |zk] < B} are invariant for 8 < 1. For 8 = 1, we obtain
the largest invariant set (the one that contains all other invariant sets). The figure
shows some state trajectories produced by MPC. Note that starting with an initial
condition zg with |zg| > 1 (or |zg| < 1) the closed-loop system obtained by MPC
is unstable (or stable, respectively); cf. the red and green trajectories shown.

Then if B > 1, the state constraint cannot be satisfied for all initial states
zo € X. In particular, if we take xo = 3, then 2zo > 2 and x1 = 20 + uo will
satisfy z1 > xo = B for any value of up with |ug| < 1. Similarly the entire
sequence of states {z\} generated by any set of feasible controls will satisfy

Trpy1 > xp  for all k, T T 0o.

The state constraint can be satisfied only for initial states xo in the set X
given by
X = {l’k | |:Ek| S 1};

see Fig. 1.6.20, which also illustrates the trajectories generated by the MPC
scheme of Eq. (1.89), which does not involve state constraints.

The preceding example illustrates a fundamental point in state-cons-
trained MPC: the state constraint set X must be invariant in the sense that
starting from any one of its points xy, there must exist a control uy, € U(xy,)
for which the next state xp41 = f(xk,ur) must belong to X. Mathemati-
cally, X is invariant if

for every x € X, there exists u € U(x) such that f(z,u) € X.

In particular, it can be seen that the set X of Eq. (1.94) is invariant if and
only if 8 < 1.

Given an MPC calculation of the form (1.91)-(1.93), we must make
sure that the set X is invariant, or else it should be replaced by an invariant
subset X C X. Then the MPC calculation (1.91)-(1.93) will be feasible
provided the initial state x¢ belongs to X.
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This brings up the question of how we compute an invariant subset
of a given constraint set, which is typically an off-line calculation that
cannot be performed during on-line play. It turns out that given X there
exists a largest possible invariant subset of X, which can be computed in
the limit with an algorithm that resembles value iteration. In particular,
starting with Xo = X, we obtain a nested sequence of subsets through the
recursion

Xiy1 = {z € X | f(z,u) belongs to X, for some u € U(x)}, k> 0.
(1.95)
Clearly, we have X411 C X} for all k, and under mild conditions it can be
shown that the intersection set X = N2 o Xk, is the largest invariant subset
of X; see the author’s PhD thesis [Ber71] and subsequent paper [Ber72al,
which introduced the concept of invariance and its use in satisfying state

constraints in control over a finite and an infinite horizon.t

To illustrate, in the preceding example, the sequence of value iterates

(1.95) starting with the set Xo = {z | |x| < 8}, where 8 > 1, is given by

Xi ={z||z| < Bk}, with fo=p and Bi41 = ﬁk;l for all k£ > 0.

It can be seen that we have 811 < B for all k and Bi, | 1, so the intersec-
tion X = N2 X yields the largest invariant set X = {xk | zi| < 1}.

There are several methods to compute invariant subsets of constraint
sets X, for which we refer to the aforementioned author’s work and the
MPC literature; see e.g., the book by Rawlings, Mayne, and Diehl [RMD17],
and the surveys by Mayne [May14], and Houska, Muller, and Villanueva
[HMV24], which give additional references. An important point is that
the computation of an invariant subset of the given constraint set X must
be done off-line with one of several available algorithmic approaches, thus
becoming part of the off-line training phase, along with the terminal cost
function G. A relatively simple possibility is to compute an invariant sub-
set X that corresponds to some nominal policy f [i.e., starting from any
point z € X, the state f(z, i(x)) belongs to X]. Such an invariant subset
may be obtained by some form of simulation using the policy ji. Moreover,
[t can also be used for truncated rollout and also provide a terminal cost
function approximation.

Once an off-line training process provides the invariant set X , the ter-
minal cost function GG, and potentially a base policy for truncated rollout,
MPC becomes an on-line play algorithm for which our earlier discussion
applies. Note, however, that in an adaptive control context, where a model
is estimated on-line as it is changing, it may be difficult to recompute on-
line an invariant set that can be used to enforce the state constraints of the

T The term used in [Ber7l] and [Ber72a] is reachability of a target tube
{X, X, ...}, which is synonymous to invariance of X.
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problem. This is particularly so if the state constraints change themselves
as part of the changing problem data. In such cases it is often preferable to
replace the state constraints with penalty or barrier functions as part of the
cost per stage. This approach has received a lot of attention recently, using
what is known as control barrier functions and control Lyapunov functions.
We refer to the literature for related accounts.

Stochastic MPC by Certainty Equivalence

Let us finally note that while in this section we have focused on deter-
ministic problems, there are variants of MPC, which include the treatment
of uncertainty. The books and papers cited earlier contain several ideas
along these lines; see e.g. the books by Kouvaritakis and Cannon [KoC16],
Rawlings, Mayne, and Diehl [RMD17], and the survey by Mesbah [Mes16].
In this connection, it is also worth mentioning the certainty equiv-
alence approach that we discussed briefly earlier. In particular, upon
reaching state x; we may perform the MPC calculations after replac-
ing the uncertain quantities wy41,wk+2,... with deterministic quantities
W41, Wkt2, - - -, While allowing for the stochastic character of the distur-
bance wy, of just the current stage k. Note that only the first step of this
MPC calculation is stochastic. Thus the calculation needed per stage is
not much more difficult than the one for deterministic problems, while still
implementing a Newton step for solving the associated Bellman equation;
see our earlier discussion, and also Section 2.5.3 of the RL book [Ber19al,
Section 3.2 of the book [Ber22a], and the MPC overview paper [Ber24].

REINFORCEMENT LEARNING AND DECISION/CONTROL

The current state of RL has greatly benefited from the cross-fertilization
of ideas from decision and control, and from artificial intelligence; see Fig.
1.7.1. The strong connections between these two fields are now widely
recognized. Still, however, there are cultural differences, including the
traditional reliance on mathematical analysis for the decision and con-
trol field, and the emphasis on challenging problem implementations in
the artificial intelligence field. Moreover, substantial differences in lan-
guage and emphasis remain between RL-based discussions (where artificial
intelligence-related terminology is used) and DP-based discussions (where
optimal control-related terminology is used).

1.7.1 Differences in Terminology

The terminology used in this book is standard in DP and optimal control,
and in an effort to forestall confusion of readers that are accustomed to
either the AT or the optimal control terminology, we provide a list of terms
commonly used in RL, and their optimal control counterparts.

(a) Environment = System.
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Figure 1.7.1 A schematic illustration of the synergy of ideas between artificial
intelligence on one hand, and decision and control on the other.
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Agent = Decision maker or controller.

Action = Decision or control.

—
o o

Reward of a stage = (Opposite of) Cost of a stage.

State value = (Opposite of) Cost starting from a state.

)

Value (or reward) function = (Opposite of) Cost function.

Maximizing the value function = Minimizing the cost function.

—~ o~
aQ

Action (or state-action) value = Q-factor (or Q-value) of a state-
control pair. (Q-value is also used often in RL.)

(i) Planning = Solving a DP problem with a known mathematical
model.

(j) Learning = Solving a DP problem without using an explicit mathe-
matical model. (This is the principal meaning of the term “learning”
in RL. Other meanings are also common.)

(k) Self-learning (or self-play in the context of games) = Solving a DP
problem using some form of policy iteration.

() Deep reinforcement learning = Approximate DP using value
and/or policy approximation with deep neural networks.

(m) Prediction = Policy evaluation.

(n) Generalized policy iteration = Optimistic policy iteration.
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State abstraction = State aggregation.
Temporal abstraction = Time aggregation.
Learning a model = System identification.

Episodic task or episode = Finite-step system trajectory.

Experience replay = Reuse of samples in a simulation process.
Bellman operator = DP mapping or operator.
Backup = Applying the DP operator at some state.

)

)

)
(r)
(s) Continuing task = Infinite-step system trajectory.
(t)

)

)

) Sweep = Applying the DP operator at all states.

)

Greedy policy with respect to a cost function J = Minimizing
policy in the DP expression defined by J.

(y) Afterstate = Post-decision state.

(z) Ground truth = Empirical evidence or information provided by
direct observation.

Some of the preceding terms will be introduced in future chapters; see also
the RL textbook [Berl9a]. The reader may then wish to return to this
section as an aid in connecting with the relevant RL literature.

1.7.2 Differences in Notation

Unfortunately, the confusion caused by differing terminology has been
further compounded by the use of inconsistent notations across various
sources. This book adheres to the “standard” notation that emerged dur-
ing the Bellman/Pontryagin optimal control era; see e.g., the books by
Athans and Falb [AtF66], Bellman [Bel67], and Bryson and Ho [BrH75].
This notation is consistent with the author’s other DP books and is the
most appropriate for a unified treatment of the subject, which simultane-
ously addresses discrete and continuous spaces problems.

A summary of the most prominently used symbols in our notational
system is as follows:

(a) a: state (also ¢ for finite-state systems).
(b
(c
(d
(e

) u: control.

) w: stochastic disturbance.

) J: cost function.

) f: system function. For deterministic systems,
Tp1 = [Tk, u)

and for stochastic systems,

Ty = f(@, ug, wi).
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Also fx in place of f for time-varying systems.

(f) g: cost per stage [g(x,u) for deterministic systems, and g(z,u,w) for
stochastic systems; also g in place of g for time-varying systems].

(g) pay(u): transition probability from state z to state y under control u
in finite-state systems [also p;;(u)].

(h) a: discount factor in discounted problems.

The z-u-J notation is standard in deterministic optimal control text-
books (e.g., the classical books [AtF66] and [BrH75], noted earlier, as well
as the more recent books by Stengel [Ste94], Kirk [Kir04], and Liberzon
[Lib11]). The symbols f (system function) and g (cost per stage) are also
widely used in both early and later optimal control literature (unfortu-
nately the more natural symbol “c” has not been used much in place of
“g” for the cost per stage).

The notations i (state) and p;;(u) (transition probability) are com-
mon in the discrete-state Markov decision process (MDP) and operations
research literature. Sometimes the alternative notation p(j |7, u) is used for
the transition probabilities.

In the artificial intelligence literature, the focus is primarily on finite-
state MDPs, particularly discounted and stochastic shortest path infinite
horizon problems. The most commonly used notation is s for state, a for
action, r(s, a, s') for reward per stage, p(s’ | s,a) or p(s,a,s’) for transition
probability from s to s’ under action a, and - for discount factor. While
this notation is well-suited to finite-state problems, it is not ideal for contin-
uous spaces models, which are of major interest in this book. The reason is
that it requires the use of transition probability distributions defined over
continuous spaces, and leads to more complex and less intuitive mathe-
matics. Moreover, for deterministic problems, which lack a probabilistic
component, the transition probability notation becomes cumbersome and
unnecessary.

1.7.3 A Few Words about Machine Learning and Mathematical
Optimization

Machine learning and optimization are closely intertwined fields, sharing
similar mathematical models and computational algorithms.t However,
they differ in their cultures and application contexts, so it is worth reflecting
on their similarities and differences.

Machine learning can be broadly categorized into three main types of
methods, all of which involve the collection and use of data in some form:

T Both fields are also closely connected to the field of statistical analysis.
However, in this section, we will not focus on this connection, as it is less relevant
to the content of this book.
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(a) Supervised learning: Here a dataset of many input-output pairs (also
called labeled data) is collected. An optimization algorithm is used
to create a parametrized function that fits well the data, as well as
make accurate predictions on new, unseen data. Supervised learning
problems are typically formulated as optimization problems, examples
of which we will see in Chapter 3. A common algorithmic approach
is to use a gradient-type algorithm to minimize a loss function that
measures the difference between the actual outputs of the dataset and
the predicted outputs of the parametrized model.

(b) Unsupervised learning: Here the dataset is “unlabeled” in the sense
that the data are not separated into input and matching output pairs.
Unsupervised learning algorithms aim to identify patterns or struc-
tures within the data, which is useful for tasks like clustering, di-
mensionality reduction, and density estimation. The objective is to
extract meaningful insights from the data. Some unsupervised learn-
ing methods can be related to DP, but the connection is not strong.
Generally speaking, unsupervised learning does not seem to align well
with the types of sequential decision making applications of this book.

(¢) Reinforcement learning: RL differs in an important way from super-
vised and unsupervised learning. It does not use a dataset as a start-
ing point. Instead, it generates data on-line or off-line as dictated
by the needs of the optimization algorithm it uses, be it multistep
lookahead minimization, approximate policy iteration and rollout, or
approximation in policy space.f

Another type of machine learning approach, which relates to DP/RL
methods, is semi-supervised learning. It involves training a model using
a dataset containing both labeled and unlabeled data. Here, some initial
labeled data are sequentially augmented with unlabeled data, with the aim
of constructing an “informative” data set that enhances machine learning
tasks such as classification. This approach lies between supervised learning
(which requires all data to be labeled) and unsupervised learning (which
works with exclusively unlabeled data). Semi-supervised learning is related
to the field of active learning, where DP-like methods are used to augment
sequentially the labeled set; see e.g., the monograph by Zhu and Goldberg
[ZhG22], the survey by Van Engelen and Hoos [VaH20], and the illustra-
tive application papers by Marchesoni-Acland et al. [MMK23], and Bhusal,
Miller, and Merkurjev [BMM24].

Optimization problems and algorithms on the other hand may or may
not involve the collection and use of data. They involve data only in the
context of special applications, most of which are related to machine learn-
ing. In theoretical terms, optimization problems are categorized in terms

T A variant of RL called offline RL or batch RL, starts from a historical
dataset, and does not explore the environment to collect new data.
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of their mathematical structure, which is the primary determinant of the
suitability of particular types of methods for their solution. In particu-
lar, it is common to distinguish between static optimization problems and
dynamic optimization problems. The latter problems involve sequential de-
cision making, with feedback between decisions, while the former problems
involve a single decision.

Stochastic problems with perfect or imperfect state observations are
dynamic (unless they involve open-loop decision making without the use of
any feedback), and they require the use of DP for their optimal solution.
Deterministic problems can be formulated as static, but they can also be
formulated as dynamic for reasons of algorithmic expediency. In this case,
the decision making process is (sometimes artificially) broken down into
stages, as is often done in this book for discrete optimization and other
contexts.

Another important categorization of optimization problems is based
on whether their search space is discrete or is continuous. Discrete prob-
lems include deterministic problems such as integer and combinatorial op-
timization problems, and can be addressed by formal methods of integer
programming as well as by DP. These problems tend to be challenging, so
they are often addressed (suboptimally) with the use of heuristics. Con-
tinuous problems are usually addressed with very different methods, which
are based on calculus and convexity, such as Lagrange multiplier theory
and duality, and the computational machinery of linear, nonlinear, and
convex programming. Some discrete problems, particularly those that in-
volve graphs (such as matching, transportation, and transshipment prob-
lems), can be addressed using network optimization methods that rely on
linear programming and duality concepts. Hybrid problems, which com-
bine discrete and continuous variables, usually require discrete optimiza-
tion techniques but can also benefit from convex duality methods, which
are fundamentally continuous.

The DP methodology, generally speaking, applies to just about any
kind of optimization problem, deterministic or stochastic, static or dy-
namic, discrete or continuous, as long as it is formulated as a sequential
decision problem, in the manner described in Sections 1.2-1.4. In terms
of algorithmic structure, DP differs significantly from other optimization
techniques, particularly those based on calculus and convexity. Notably,
DP can handle both discrete and continuous problems and is not concerned
with local minima, focusing instead on finding global minima.

Notice a qualitative difference between optimization and machine
learning: the former is mostly organized around mathematical structures
and the analysis of the foundational issues of the corresponding algorithms,
while the latter is mostly organized around how data is collected, used, and
analyzed, often with a strong emphasis on statistical issues. This is an im-
portant distinction, which affects profoundly the perspectives of researchers
in the two fields.
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Relations Between RL and DP Methodologies

When comparing the RL and DP methodologies, it is important to rec-
ognize that they are fundamentally connected by their shared focus on
sequential decision making. Thus, any problem that can be addressed by
DP can, in principle, also be addressed by RL, and vice versa.

One may argue that the RL algorithmic methodology is broader than
that of DP. It includes the use of optimization algorithms of the gradient
descent and random search type, simulation-based methodologies, statisti-
cal methods of sampling and performance evaluation, and neural network
design and training ideas. However, methods of this type have also been
considered in DP-related research and applications for many years.

In the artificial intelligence view of RL, a machine learns through
trial and error by interacting with an environment.t In practical terms,
this is more or less the same as what DP aims to do, but in RL there is
often an emphasis on the presence of uncertainty and exploration of the
environment. In the decision, control, and optimization community, there
is a lot of interest in using RL methods to address intractable problems,
including deterministic discrete/integer optimization, which need not in-
volve data collection, interaction with the environment, uncertainty, and
learning (adaptive control is the only decision and control problem type,
where uncertainty and exploration arise in a significant way).

In terms of applications, DP was originally developed in the 1950s and
1960s as part of the then emerging methodologies of operations research
and optimal control. These methodologies are now mature and provide
important tools and perspectives, as well as a rich variety of applications,
such as robotics, autonomous transportation, and aerospace, which can
benefit from the use of RL. Moreover, DP has been used in a broad range
of applications in industrial engineering, operations research, economics,
and finance, so these applications can also benefit from the use of RL
methods and perspectives.

At the same time, RL and machine learning have ushered opportuni-
ties for the application of DP techniques in new domains, such as machine
translation, image recognition, knowledge representation, database organi-
zation, large language models, and automated planning, where they can
have a significant practical impact. We may also add that RL has brought
into the field of sequential decision making a fresh and ambitious spirit
that has made possible the solution of problems thought to be well outside
the capabilities of DP. In particular, before the connections between RL
and DP were recognized, large dimensional problems, like those involving a
Euclidean state space of even moderate dimension, or POMDP problems,
were considered totally intractable with the DP methodology.

1 A common description is that “the machine learns sequentially how to make
decisions that maximize a reward signal, based on the feedback received from the
environment.”
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The Use of Mathematics in Optimization and Machine Learning

Let us now discuss some differences between the research cultures of opti-
mization and machine learning, as they pertain to the use of mathemat-
ics. In optimization, the emphasis is often on general purpose methods
that offer broad and mathematically rigorous performance guarantees, for
a wide variety of problems. In particular, it is widely believed that a solid
mathematical foundation for a given optimization methodology enhances
its reliability and clarifies the boundaries of its applicability. Furthermore,
it is recognized that formulating practical problems and matching them
to the right algorithms is greatly enhanced by one’s understanding of the
mathematical structure of the underlying optimization methodology.

Machine learning research includes important lines of analysis that
have a strongly mathematical character, particularly relating to theoreti-
cal computer science, complexity theory, and statistical analysis. At the
same time, in machine learning there are eminently useful algorithmic struc-
tures, such as neural networks, large language models, and image generative
models, which are not well-understood mathematically and defy to a large
extent mathematical analysis.t This can add to a perception that focusing
on rigorous mathematics, as opposed to practical implementation, may be
a low payoff investment in many practical machine learning contexts.

Moreover, the starting point in machine learning is often a specific
dataset or a specialized type of training problem (e.g., language translation
or image recognition). The priority is to find a method that works well for
that specific dataset or problem, even if it is not generalizable to others.
Thus specialized approximation architectures, implementation techniques,
and heuristics, which perform well for the given problem and dataset type,
may be perfectly acceptable in a machine learning context, even if they do
not provide rigorous and generally applicable performance guarantees.

In conclusion, both optimization and machine learning involve math-
ematical models and rigorous analysis in important ways, and often overlap
in the techniques and tools that they use, as well as in the practical appli-
cations that they address. However, depending on the problem at hand,
there may be differences in the emphasis and priority placed on mathe-
matical analysis, insight, and generality versus practical effectiveness and
problem-specific efficiency. This can lead to some tension, as different fields
may not fully appreciate each other’s perspective.

T As an illustration, the paper by He et al., “Deep Residual Learning for
Image Recognition,” published in Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition, 2016, has been cited over 162,000 times as of May 2023,
and contains only two equations. The famous neural network architecture paper
by Vaswani et al., “Attention is all you Need,” published in NIPS, 2017, which
laid the foundation for GPT, has been cited over 73,000 times as of May 2023,
and contains only six equations.
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NOTES, SOURCES, AND EXERCISES

We will now summarize this chapter and describe how it can be used flexibly
as a foundation for a few different courses. We will also provide a selective
overview of the DP and RL literature, and also give a few exercises that
have been used in ASU classes.

Chapter Summary

In this chapter, we have aimed to provide an overview of the approximate
DP/RL landscape, which can serve as the foundation for a deeper in-class
development of other RL topics. In particular, we have described in varying
levels of depth the following:

(a)

(b)

The algorithmic foundation of exact DP in all its major forms: de-
terministic and stochastic, discrete and continuous, finite and infinite
horizon.

Approximation in value space with one-step and multistep lookahead,
the workhorse of RL, which underlies its major success stories, includ-
ing AlphaZero. We contrasted approximation in value space with
approximation in policy space, and discussed how the two may be
combined.

The important division between off-line training and on-line play in
the context of approximation in value space. We highlighted how their
synergy can be intuitively explained in terms of Newton’s method.

The fundamental methods of policy iteration and rollout, the former
being primarily an off-line method, and the latter being primarily a
less ambitious on-line method. Both methods and their variants bear
close relation to Newton’s method and draw their effectiveness from
this relation.

Some major models with a broad range of applications, such as dis-
crete optimization, POMDP, multiagent problems, adaptive control,
and model predictive control. We delineated their principal character-
istics and the major RL implementation issues within their contexts.

The use of function approximation, which has been a recurring theme
in our presentation. We have touched upon some of the principal
schemes for approximation, e.g., neural networks and feature-based
architectures.

One of the principal aims of this chapter was to provide a foundational

platform for a range of RL courses that explore at a deeper level various
algorithmic methodologies, such as:

(1)
(2)

Rollout and policy iteration.

Neural networks and other approximation architectures for off-line
training.
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(3) Aggregation, which can be used for cost function approximation in
the context of approximation in value space.

(4) A broader discussion of sequential decision making in contexts involv-
ing changing system parameters, sequential estimation, and simulta-
neous system identification and control.

(5) Stochastic algorithms, such as temporal difference methods and Q-
learning, which can be used for off-line policy evaluation in the context
of approximate policy iteration.

(6) Sampling methods to collect data for off-line training in the context
of cost and policy approximations.

(7) Statistical estimates and efficiency enhancements of various sampling
methods used in simulation-based schemes. This includes confidence
intervals and computational complexity estimates.

(8) On-line methods for specially structured contexts, including problems
of the multi-armed bandit type.

(9) Simulation-based algorithms for approximation in policy space, in-
cluding policy gradient and random search methods.

(10) A deeper exploration of control system design methodologies such as
model predictive control and adaptive control, and their applications
in robotics and automated transportation.

In our course we have focused selectively on the methodologies (1)-
(4), with a limited coverage of (9) in Section 3.5. In a different course,
other choices from the above list may be made, by building on the content
of the present chapter.

Notes and Sources for Individual Sections

In the literature review that follows, we will focus primarily on textbooks,
research monographs, and broad surveys, which supplement our discus-
sions, present related viewpoints, and collectively provide a guide to the
literature. Inevitably, our selection reflects a certain cultural bias and an
overemphasis on sources that are familiar to the author and aligned in style
with this book (including the author’s own works). We acknowledge in ad-
vance that this may lead to omissions of research references that fall outside
our own understanding and perspective on the field, and we apologize for
any such exclusions.

Sections 1.1-1.4: Our discussion of exact DP in this chapter has been
brief since our focus in this book will be on approximate DP and RL. For
a more comprehensive treatment of finite-horizon exact DP and its appli-
cations to both discrete and continuous space problems, the author’s DP
textbook [Berl7a] provides an extensive overview, using notation and style
consistent with this book. The books by Puterman [Put94] and by the
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author [Ber12] provide detailed (but substantially different) treatments of
infinite horizon finite-state stochastic DP problems. The book [Ber12] also
covers continuous/infinite state and control spaces problems, including the
linear quadratic problems that we have discussed for one-dimensional prob-
lems in this chapter. Continuous spaces problems present special analytical
and computational challenges, which are at the forefront of research of the
RL methodology. The author’s 1976 DP textbook [Ber76] was the first to
develop DP within a framework that allows arbitrary state, control, and
disturbance spaces.

Some of the more complex mathematical aspects of exact DP were
addressed in the monograph by Bertsekas and Shreve [BeS78], particu-
larly the probabilistic/measure-theoretic issues associated with stochastic
optimal control, including partial state information problems. This mono-
graph provides an extensive treatment of these issues. The followup work
by Huizhen Yu and the author [YuB15] resolves the special measurability
issues that relate to policy iteration, and provides further analysis relating
to the convergence of value iteration. The second volume of the author’s
DP book [Ber12], Appendix A, includes an accessible summary introduc-
tion of the measure-theoretic framework of the book [BeS78].1 In the RL
literature, the mathematical difficulties around measurability are usually
neglected (as they are in this book), and this is fine because they do not
play an important role in applications. Moreover, measurability issues do
not arise for problems involving finite or countably infinite state and con-
trol spaces. We note, however, that there are quite a few published works
in RL as well as exact DP, which purport to address measurability issues
with a mathematical narrative that is either confusing or plain incorrect.

1 The rigorous mathematical theory of stochastic optimal control, including
the development of an appropriate measure-theoretic framework, originated in
the 60s and 70s, with the work of Blackwell and other mathematicians. It culmi-
nated in the monograph [BeS78], which provides the now “standard” framework,
based on the formalism of Borel spaces, lower semianalytic functions, and uni-
versally measurable policies. This development involves daunting mathematical
complications, which stem, among others, from the observation that when a
Borel measurable function F'(z,u), of the two variables x and w, is minimized
with respect to u, the resulting function G(x) = min, F(z,u) need not be Borel
measurable (it belongs to the broader class of lower semianalytic functions; see
[BeST78]). Moreover, even if the minimum is attained by several policies p, i.e.,
G(z) = F(m, ,u(a:)) for all z, it is possible that none of these p is Borel measurable
(however, there does exist a minimizing policy that belongs to the broader class
of universally measurable policies). Thus, starting with a Borel measurability
framework for cost functions and policies, we quickly get outside that framework
when executing DP algorithms, such as value and policy iteration. The broader
framework of universal measurability, introduced in [BeS78], is required to correct
this deficiency, in the absence of additional (fairly strong) assumptions.
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The third edition of the author’s abstract DP monograph [Ber22b],
expands on the original 2013 first edition, and aims at a unified develop-
ment of the core theory and algorithms of total cost sequential decision
problems. It addresses simultaneously stochastic, minimax, game, risk-
sensitive, and other DP problems, through the use of abstract DP oper-
ators (or Bellman operators as we call them here). The idea is to gain
insight through abstraction. In particular, the structure of a DP model is
encoded in its abstract Bellman operator, which serves as the “mathemat-
ical signature” of the model. Thus, characteristics of this operator (such
as monotonicity and contraction) largely determine the analytical results
and computational algorithms that can be applied to that model. Abstract
DP ideas are also useful for visualizations and interpretations of RL meth-
ods using the Newton method formalism that we have discussed somewhat
briefly in this book in the context of linear quadratic problems.

Approximation in value space, rollout, and policy iteration are the
principal subjects of this book.T These are very powerful and general tech-
niques: they can be applied to deterministic and stochastic problems, finite
and infinite horizon problems, discrete and continuous spaces problems,
and mixtures thereof. Moreover, rollout is reliable, easy to implement, and
can be used in conjunction with on-line replanning. It is also compatible
with new and exciting technologies such as transformer networks and large
language models (see Section 2.3.7).

As we have noted, rollout with a given base policy is simply the first
iteration of the policy iteration algorithm starting from the base policy.
Truncated rollout can be interpreted as an “optimistic” form of a single
policy iteration, whereby a policy is evaluated inexactly, by using a limited
number of value iterations; see the books [Ber20al, [Ber22al.}

1 The name “rollout” (also called “policy rollout”) was introduced by Tesauro
and Galperin [TeG96] in the context of rolling the dice in the game of backgam-
mon. In Tesauro’s proposal, a given backgammon position is evaluated by “rolling
out” many games starting from that position to the end of the game. To quote
from the paper [TeG96]: “In backgammon parlance, the expected value of a po-
sition is known as the “equity” of the position, and estimating the equity by
Monte-Carlo sampling is known as performing a “rollout.” This involves playing
the position out to completion many times with different random dice sequences,
using a fixed policy to make move decisions for both sides.”

I Truncated rollout was also proposed in the context of backgammon in the
paper [TeG96]. To quote from this paper: “Using large multi-layer networks
to do full rollouts is not feasible for real-time move decisions, since the large
networks are at least a factor of 100 slower than the linear evaluators described
previously. We have therefore investigated an alternative Monte-Carlo algorithm,
using so-called “truncated rollouts.” In this technique trials are not played out
to completion, but instead only a few steps in the simulation are taken, and
the neural net’s equity estimate of the final position reached is used instead of
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Policy iteration, which can be seen as repeated rollout, is more am-
bitious and challenging than rollout. It requires off-line training, possibly
in conjunction with the use of neural networks. Together with its neural
network and distributed implementations, it will be discussed in more de-
tail later. Note that rollout does not require any off-line training, once the
base policy is available; this is its principal advantage over policy iteration.

Section 1.5: There is a vast literature on linear quadratic problems. The
connection of policy iteration with Newton’s method within this context
and its quadratic convergence rate was first derived by Kleinman [Kle68]
for continuous-time linear quadratic problems (the corresponding discrete-
time result was given by Hewer [Hew71]). For followup work, which relates
to policy iteration with approximations, see Feitzinger, Hylla, and Sachs
[FHS09], and Hylla [Hyl11].

The general relation of approximation in value space with Newton’s
method, beyond policy iteration, and its connections with MPC and adap-
tive control was first presented in the author’s book [Ber20al, the papers
[Ber21b], [Ber22c], and in the book [Ber22a|, which contains an extensive
discussion. This relation provides the starting point for an in-depth un-
derstanding of the synergy between the off-line training and the on-line
play components of the approximation in value space architecture, includ-
ing the role of multistep lookahead in enhancing the starting point of the
Newton step. The monograph [Ber22a| also provides analysis of variants of
Newton’s method applied to nondifferentiable fixed point problems, such
as the ones arising in the context of Bellman’s equation (which involves
nondifferentiabilities in finite-control space problems, among others).

Note that in approximation in value space, we are applying Newton’s
method to the solution of a system of equations (the Bellman equation).
This context has no connection with the “gradient descent” methods that
are popular for the solution of special types of optimization problems in RL,
arising for example in neural network training problems (see Chapter 3). In
particular, there are no gradient descent methods that can be used for the
solution of systems of equations such as the Bellman equation. There are,
however, “first order” deterministic algorithms such as the Gauss-Seidel
and Jacobi methods (and stochastic asynchronous extensions) that can
be applied to the solution of systems of equations with special structure,
including Bellman equations. Such methods include various Q-learning

the actual outcome. The truncated rollout algorithm requires much less CPU
time, due to two factors: First, there are potentially many fewer steps per trial.
Second, there is much less variance per trial, since only a few random steps are
taken and a real-valued estimate is recorded, rather than many random steps and
an integer final outcome. These two factors combine to give at least an order
of magnitude speed-up compared to full rollouts, while still giving a large error
reduction relative to the base player.” Analysis and computational experience
with truncated rollout since 1996 are consistent with the preceding assessment.
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algorithms, which are discussed in the neuro-dynamic programming book
by Bertsekas and Tsitsiklis [BeT89], as well as the recent book by Meyn
[Mey22]. While these methods can be useful, they are typically much slower
than Newton’s method and have limited utility in the context of on-line

play.

Section 1.6: Many applications of DP are discussed in the 1st volume
of the author’s DP book [Berl7a]. This book also covers a broad vari-
ety of state augmentation and problem reformulation techniques, including
the mathematics of how problems with imperfect state information can be
transformed to perfect state information problems. In Section 1.6 we have
aimed to provide an overview, with an emphasis on the use of approxima-
tions. In what follows we provide some related historical notes.

Multiagent problems: This subject has a long history (Marschak [Mar55],
Radner [Rad62], Witsenhausen [Wit68], [Wit71a], [Wit71b]), and was re-
searched extensively in the 70s; see the review paper by Ho [Ho80] and
the references cited there. The names used at that time were team the-
ory and decentralized control. For a sampling of subsequent works in team
theory and multiagent optimization, we refer to the papers by Krainak,
Speyer, and Marcus [KLM82a], [KLM82b], and de Waal and van Schuppen
[WaS00]. For more recent works, see Nayyar, Mahajan, and Teneketzis
[NMT13], Nayyar and Teneketzis [NaT19], Li et al. [LTZ19], Qu and Li
[QuL19], Gupta [Gup20], the book by Zoppoli, Sanguineti, Gnecco, and
Parisini [ZSG20], and the references quoted there. In addition to the afore-
mentioned works, surveys of multiagent sequential decision making from an
RL perspective were given by Busoniu, Babuska, and De Schutter [BBDO0S],
[BBD10b).

The term “multiagent” has been used with various meanings in the
literature. Some authors emphasize scenarios where agents lack common in-
formation when making their decisions, leading to sequential decision prob-
lems with “nonclassical information patterns.” These problems are partic-
ularly complex because they cannot be solved using exact DP techniques.
Other authors focus on situations where the agents are “weakly” coupled
through the system equation, the cost function, or the constraints. They
consider methods that exploit the weak coupling to address the problem
with (suboptimal) decoupled computations.

Agent-by-agent minimization in multiagent approximation in value
space and rollout was proposed in the author’s paper [Ber19c|, which also
discusses extensions to infinite horizon policy iteration algorithms, and ex-
plores connections with the concept of person-by-person optimality from
team theory; see also the textbook [Ber20a], the papers [Ber19d], [Ber20b].
The papers by Bhattacharya et al. [BKB20], Garces et al. [GBG22], and
Weber at al. [WGP23] present computational studies with challenging prob-
lems, where several of the multiagent algorithmic ideas were adapted,
tested, and validated. These papers consider large-scale multi-robot and
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vehicle routing problems, involving partial state information, and explore
some of the attendant implementation issues, including autonomous mul-
tiagent rollout, through the use of policy neural networks and other pre-
computed signaling policies. They also compare the performance of these
multiagent methods against alternative approaches, including those based
on policy gradient techniques.

A different form of distributed computation and multiagent optimiza-
tion, where each agent has a partial/local model of the system within part
of the state space and relies on aggregate information from other agents
for DP computations, is proposed in the author’s DP book [Ber12], Section
6.5.4; see also Section 3.5.8 of the present book.

Adaptive control: The research on adaptive control has a long history and
its literature is very extensive; see the books by Astrém and Wittenmark
[AsW94], Astrom and Hagglund [AsHO06], Bodson [Bod20], Goodwin and
Sin [GoS84], Toannou and Sun [I0S96], Jiang and Jiang [JiJ17], Krstic,
Kanellakopoulos, and Kokotovic [KKK95], Kumar and Varaiya [KuV86],
Liu, et al. [LWW17], Lavretsky and Wise [LaW13], Narendra and An-
naswamy [NaA12], Sastry and Bodson [SaB11], Slotine and Li [SIL91], and
Vrabie, Vamvoudakis, and Lewis [VVL13]. These books describe a vast
array of methods spanning 60 years, and ranging from adaptive and PID
model-free approaches, to simultaneous or sequential control and identifi-
cation, to time series models, to extremum-seeking methods, to simulation-
based RL techniques, etc.

The ideas of PID control have been applied widely to adaptive and
robust control contexts, and have a long history; see the books by Astrém
and Hagglund [AsH95], [AsHO6], which provide many references. According
to Wikipedia, “a formal control law for what we now call PID or three-term
control was first developed using theoretical analysis, by Russian American
engineer Nicolas Minorsky” in 1922 [Min22].

The DP framework for adaptive control was introduced in a series of
papers by Feldbaum, starting in 1960 with [Fel60], under the name dual
control theory. These papers emphasized the division of effort between
system estimation and control, now more commonly referred to as the
exploration-exploitation tradeoff. In the last paper of the series [Fel63],
Feldbaum prophetically concluded as follows: “At the present time, the
most important problem for the immediate future is the development of
approximate solution methods for dual control theory problems, the formu-
lation of sub-optimal strategies, the determination of the numerical value
of risk in quasi-optimal systems and its comparison with the value of risk
in existing systems.”

The research on problems involving unknown models and using data
for model identification simultaneously with control was rekindled with the
advent of the artificial intelligence side of RL and its focus on the active
exploration of the environment. Here there is emphasis on “learning from
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interaction with the environment” [SuB18] through the use of (possibly
hidden) Markov decision models, machine learning, and neural networks,
in a wide array of methods that are under active development at present.
This is more or less the same as the classical problems of dual and adap-
tive control that have been discussed since the 60s from a control theory
perspective.

The formulation of adaptive and dual control problems as POMDP
(cf. Section 2.11) is classical. The use of rollout within this context was
first suggested in the author’s book [Ber22a|, Section 6.7.

Model predictive control: The literature on the theory and applications
of MPC is voluminous. Some early widely cited papers are Clarke, Mo-
htadi, and Tuffs [CMT87a], [CMT87b], and Keerthi and Gilbert [KeG88].
For surveys, which give many of the early references, see Morari and Lee
[MoL99], Mayne et al. [MRRO00], and Findeisen et al. [FIA03], and for a
more recent review, see Mayne [May14]. Textbooks on MPC include Ma-
ciejowski [Mac02], Goodwin, Seron, and De Dona [GSD06], Camacho and
Bordons [CaB07], Kouvaritakis and Cannon [KoC16], Borrelli, Bemporad,
and Morari [BBM17], and Rawlings, Mayne, and Diehl [RMD17]. The
connections between MPC, approximation in value space and rollout were
discussed in the author’s surveys [Ber0Oba] and [Ber24].

Reinforcement Learning Sources

The first DP/RL books were written in the 1990s, setting the tone for sub-
sequent developments in the field. One in 1996 by Bertsekas and Tsitsiklis
[BeT96], which reflects a decision, control, and optimization viewpoint,
and another in 1998 by Sutton and Barto, which is culturally different
and reflects an artificial intelligence viewpoint (a 2nd edition, [SuB18], was
published in 2018). We refer to the former book and also to the author’s
DP textbooks [Ber12], [Ber17a] for a broader discussion of some of the top-
ics of this book, including algorithmic convergence issues and additional
DP models, such as those based on average cost and semi-Markov problem
optimization. Note that both of these books deal with finite-state Marko-
vian decision models and use a transition probability notation, as they do
not address continuous spaces problems, which are one of the major focal
points of this book.

More recent books are by Gosavi [Gosl5] (a much expanded 2nd
edition of his 2003 monograph), which emphasizes simulation-based op-
timization and RL algorithms, Cao [Cao07], which focuses on a sensi-
tivity approach to simulation-based methods, Chang, Fu, Hu, and Mar-
cus [CFH13] (a 2nd edition of their 2007 monograph), which emphasizes
finite-horizon/multistep lookahead schemes and adaptive sampling, Buso-
niu, Babuska, De Schutter, and Ernst [BBD10a], which focuses on function
approximation methods for continuous space systems and includes a dis-
cussion of random search methods, Szepesvari [Szel0], which is a short
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monograph that selectively treats some of the major RL algorithms such
as temporal differences, armed bandit methods, and Q-learning, Powell
[Pow11], which emphasizes resource allocation and operations research ap-
plications, Powell and Ryzhov [PoR12], which focuses on specialized topics
in learning and Bayesian optimization, Vrabie, Vamvoudakis, and Lewis
[VVL13], which discusses neural network-based methods and on-line adap-
tive control, Kochenderfer et al. [KAC15], which selectively discusses ap-
plications and approximations in DP and the treatment of uncertainty,
Jiang and Jiang [JiJ17], which addresses adaptive control and robustness
issues within an approximate DP framework, Liu, Wei, Wang, Yang, and Li
[LWW17], which deals with forms of adaptive dynamic programming, and
topics in both RL and optimal control, and Zoppoli, Sanguineti, Gnecco,
and Parisini [ZSG20], which addresses neural network approximations in
optimal control as well as multiagent /team problems with nonclassical in-
formation patterns. The book by Meyn [Mey22] focuses on the connections
of RL and optimal control, similar to the present book, but is more mathe-
matically oriented, and treats stochastic problems and algorithms in more
detail.

There are also several books that, while not exclusively focused on DP
and/or RL, touch upon some of the topics of the present book. The book by
Borkar [Bor08] is an advanced monograph that addresses rigorously many
of the convergence issues of iterative stochastic algorithms in approximate
DP, mainly using the so-called ODE approach. The book by Meyn [Mey07]
is broader in its coverage, but discusses some of the popular approximate
DP/RL algorithms. The book by Haykin [Hay08] discusses approximate
DP in the broader context of neural network-related subjects. The book by
Krishnamurthy [Kril6] focuses on partial state information problems, with
a discussion of both exact DP, and approximate DP/RL methods. The
textbooks by Kouvaritakis and Cannon [KoC16], Borrelli, Bemporad, and
Morari [BBM17], and Rawlings, Mayne, and Diehl [RMD17] collectively
provide a comprehensive view of the MPC methodology. The book by Lat-
timore and Szepesvari [LaS20] is focused on multiarmed bandit methods.
The book by Brandimarte [Bra2l] is a tutorial introduction to DP/RL
that emphasizes operations research applications and includes MATLAB
codes. The book by Hardt and Recht [HaR21] focuses on broader subjects
of machine learning but covers selectively approximate DP and RL topics
as well.

The present book is similar in style, terminology, and notation to the
author’s recent textbooks [Ber19a] (Reinforcement Learning and Optimal
Control), [Ber20a] (Rollout and Policy Iteration), [Ber22a] (Lessons from
AlphaZero), and the 3rd edition of the abstract DP monograph [Ber22b],
which collectively provide a fairly comprehensive and more mathemati-
cal account of the subject. In particular, the book [Berl9a] includes a
broader coverage of approximation in value space methods, including cer-
tainty equivalent control and aggregation methods. It also addresses ap-
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proximation in policy space in greater detail than the present book. The
book [Ber20a] focuses more closely on rollout, policy iteration, and multi-
agent problems, and introduced the connection of approximation in value
space with Newton’s method. The book [Ber22a] focuses primarily on this
connection, relying on analysis first provided in the book [Ber20a] and the
paper [Ber22c]. The abstract DP monograph [Ber22b] (a 3rd edition of
the original 2013 1st edition) is an advanced treatment of exact DP, which
provides the mathematical framework of Bellman operators that are cen-
tral for some of the Newton method visualizations presented in the present
book and in the books [Ber20a], [Ber22a).

In addition to textbooks, there are many surveys and short research
monographs relating to our subject, which are rapidly multiplying in num-
ber. Influential early surveys were written, from an artificial intelligence
viewpoint, by Barto, Bradtke, and Singh [BBS95] (which dealt with the
methodologies of real-time DP and its antecedent, real-time heuristic search
[Kor90], and the use of asynchronous DP ideas [Ber82], [Ber83], [BeT89]
within their context), and by Kaelbling, Littman, and Moore [KLM96]
(which focused on general principles of RL). The volume by White and
Sofge [WhS92] also contains surveys describing early work in the field.

Several overview papers in the volume by Si, Barto, Powell, and Wun-
sch [SBP04] describe some approximation methods that we will not be
covering in much detail in this book: linear programming approaches (De
Farias [DeF04]), large-scale resource allocation methods (Powell and Van
Roy [PoV04]), and deterministic optimal control approaches (Ferrari and
Stengel [FeS04], and Si, Yang, and Liu [SYLO04]). Updated accounts of
these and other related topics are given in the survey collections by Lewis,
Liu, and Lendaris [LLLO08|, and Lewis and Liu [LeL13].

Recent extended surveys and short monographs are Borkar [Bor09] (a
methodological point of view that explores connections with other Monte
Carlo schemes), Lewis and Vrabie [LeV09] (a control theory point of view),
Szepesvari [Szel0] (which discusses approximation in value space from a
RL point of view), Deisenroth, Neumann, and Peters [DNP11], and Grond-
man et al. [GBL12] (which focus on policy gradient methods), Browne et
al. [BPW12] (which focuses on Monte Carlo Tree Search), Mausam and
Kolobov [MaK12] (which deals with Markovian decision problems from
an artificial intelligence viewpoint), Geffner and Bonet [GeB13] (which
deals with problems in search and automated planning), Schmidhuber
[Sch15], Arulkumaran et al. [ADB17], Li [Lil17], Busoniu et al. [BDT18],
and Caterini and Chang [CaC18] (which deal with reinforcement learn-
ing schemes that are based on the use of deep neural networks), Recht
[Rec18a] (which discusses continuous spaces optimal control), and the au-
thor’s [Ber05a] (which focuses on rollout algorithms and MPC), [Berlla]
(which focuses on approximate policy iteration), [Ber18a] (which focuses
on aggregation methods), [Ber20b] (which focuses on multiagent problems),
and [Ber24] (which focuses on the relations between RL and MPC).
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Figure 1.8.1 Solution of parts (a), (b), and (c) of Exercise 1.1. A 5-city traveling
salesman problem illustration of rollout with the nearest neighbor base heuristic.

EXERCISES

1.1 (Computational Exercise - Traveling Salesman Problem)

Consider a modified version of the four-city traveling salesman problem of Ex-
ample 1.2.3, where there is a fifth city E. The intercity travel costs are shown in
Fig. 1.8.1, which also gives the solutions to parts (a), (b), and (c).

(a) Use exact DP with starting city A to verify that the optimal tour is AB-
DECA with cost 20.

(b) Verify that the nearest neighbor heuristic starting with city A generates
the tour ACDBEA with cost 48.

(c) Apply rollout with one-step lookahead minimization, using as base heuristic
the nearest neighbor heuristic. Show that it generates the tour AECDBA
with cost 37.

Hllustration of the algorithm: At city A, the nearest neighbor heuristic
generates the tour ACDBEA with cost 48, as per part (b). At city A, the
rollout algorithm considers the four options of moving to cities B, C, D,
E, or equivalently to states AB, AC, AD, AE, and it computes the nearest
neighbor-generated tours corresponding to each of these states. These tours
are ABCDEA with cost 49, ACDBEA with cost 48, ADCEBA with cost
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63, and AECDBA with cost 37. The tour AECDBA has the least cost, so
the rollout algorithm moves to city E or equivalently to state AE.

At AE, the rollout algorithm considers the three options of moving to
cities B, C, D, or equivalently to states AEB, AEC, AED, and it computes
the nearest neighbor-generated tours corresponding to each of these states.
These tours are AEBCDA with cost 42, AECDBA with cost 37, AEDCBA
with cost 63. The tour AECDBA has the least cost, so the rollout algorithm
moves to city C or equivalently to state AEC.

At AEC, the rollout algorithm considers the two options of moving to cities
B, D, and compares the nearest neighbor-generated tours corresponding to
each of these. These tours are AECBDA with cost 52 and AECDBA with
cost 37. The tour AECDBA has the least cost, so the rollout algorithm
moves to city D or equivalently to state AECD. Then the rollout algorithm
has only one option and generates the tour AECDBA with cost 37.

Apply rollout with two-step lookahead minimization, using as base heuristic
the nearest neighbor heuristic. This rollout algorithm operates as follows.
For k = 1,2,3, it starts with a k-city partial tour, it generates every pos-
sible two-city addition to this tour, uses the nearest neighbor heuristic to
complete the tour, and selects as next city to add to the k-city partial tour
the city that corresponds to the best tour thus obtained (only one city is
added to the current tour at each step of the algorithm, not two). Show
that this algorithm generates the optimal tour.

Estimate roughly the complexity of the computations in parts (a), (b), (c),
and (d), assuming a generic N-city traveling salesman problem. Answer:
The exact DP algorithm requires O(N N ) computation, since there are

(N=1)+(N=1)(N=2)+- -+ (N=1)(N=2)--- 2+ (N=1)(N=2)---2-1

arcs in the DP graph to consider, and this number can be estimated as
O(N™). The nearest neighbor heuristic that starts at city A performs
O(N) comparisons at each of N stages, so it requires O(N?) computation.
The rollout algorithm at stage k£ runs the nearest neighbor heuristic N — k
times, so it must run the heuristic O(N?) times for a total computation
of O(N 4). Thus the rollout algorithm’s complexity involves a low order
polynomial increase over the complexity of the base heuristic, something
that is generally true for practical discrete optimization problems. Note
that even though this may represent a substantial increase in computation
over the base heuristic, it is a potentially enormous improvement over the
complexity of the exact DP algorithm.

1.2 (Computational Exercise - Linear Quadratic Problem)

In this problem we focus on the one-dimensional linear quadratic problem of
Section 1.5 and the interpretation of approximation space as a Newton step for
solving the Riccati equation. Consider the undiscounted linear quadratic problem
with parameters a =2, b=1, ¢ =1, r = 5. For this problem:

(a)

Plot and solve graphically the Riccati equation as in Fig. 1.5.1.
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(b) Plot and solve graphically the Riccati equation corresponding to the linear
policy p(z) = —(3/2)x.

(c) Plot graphically the numerical solution of the Riccati equation by value
iteration as in Fig. 1.5.3, using a starting point Ko < K* and a starting
point Ko > K™.

(d) Interpret graphically approximation in value space with one-step, two-step,
and three-step lookahead as a Newton step in the manner of Figs. 1.5.7 and
1.5.8. Use cost function approximations Kz? with K < K* and K > K*.
What is the region of stability, i.e., the set of K for which approximation in
value space produces a stable policy under one-step, two-step, and three-
step lookahead.

(e) Plot the performance error | K; — K*| as a function of | K — K*| for one-step,
two-step, and three-step lookahead approximation in value space.

(f) Plot graphical interpretations of rollout and truncated rollout in the manner
of Figs. 1.5.10 and 1.5.11 using a stable starting linear policy of your choice.

1.3 (Computational Exercise - Spiders and Flies)

Consider the spiders and flies problem of Example 1.6.5 with two differences:
the five flies stay still (rather than moving randomly), and there are only two
spiders, both of which start at the fourth square from the right at the top row
of the grid of Fig. 1.6.10. The base policy is to move each spider one square
towards its nearest fly, with distance measured by the Manhattan metric, and
with preference given to a horizontal direction over a vertical direction in case of
a tie. Apply the multiagent rollout algorithm of Section 1.6.5, and compare its
performance with the one of the ordinary rollout algorithm, and with the one of
the base policy. This problem is also discussed in Section 2.9.

1.4 (Computational Exercise - Exercising an Option)

This exercise deals with a computational comparison of the optimal policy, a
heuristic policy, and on-line approximation in value space using the heuristic
policy, in the context of a problem that involves the timing of the sale of a stock.
An investor has the option to sell a given amount of stock at any one of NV
time periods. The initial price of the stock is an integer x¢. The price xy, if it is
positive and it is less than a given positive integer value Z, it evolves according
to
zr +1 with probability p™,
Tk+1 = Tk with probability 1 —p*™ —p~,
zr — 1 with probability p~,

where p* and p~ have known values with
0<p <p", pr4+p <L

If 2 = 0, then 41 moves to 1 with probability p*, and stays unchanged at 0
with probability 1 — p™. If z; = Z, then x,,; moves to & — 1 with probability
p~, and stays unchanged at & with probability 1 —p™~.
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At each period k£ = 0,..., N — 1 for which the stock has not yet been sold,
the investor (with knowledge of the current price x), can either sell the stock
at the current price xj or postpone the sale for a future period. If the stock has
not been sold at any of the periods kK = 0,..., N — 1, it must be sold at period
N at price zn. The investor wants to maximize the expected value of the sale.
For the following computations, use reasonable values of your choice for N, p™,
p~, T, and zo (you should choose zo between 0 and Z). You are encouraged to
experiment with different sets of values. A set of values that you may try first is

N=14, zo=3, =7 p =p =0.25.

(a) Formulate the problem as a finite horizon DP problem by identifying the
state, control, and disturbance spaces, the system equation, the cost func-
tion, and the probability distribution of the disturbance. Write the cor-
responding exact DP algorithm, and use it to compute the optimal policy
and the optimal cost as a function of zo.

Solution: The optimal reward-to-go is generated by the following DP algo-
rithm:

JX;(:EN) = TN, (196)

and for k=0,...,N — 1, if zx = 0, then
Ji(0) = p" i (1) + (1 = p)Ji541(0), (1.97)

if zx =z, then
Ji (z) = 7, (1.98)

(since the price cannot go higher than z, once at Z, but can go lower), and
if 0 < zx < T, then

Ji (z1) = max {mm p+J,:+1(:ck+1)+(1—p+—p7)J,:+1(:ck)—i—p*J;:H(mk—l)}.
(1.99)
The optimal policy is to sell at z, = 1,...,z—1, if 2} attains the maximum
in the above equation, and not to sell otherwise. When x;, = 0, it is optimal
not to sell, while when z;, = Z, it is optimal to sell.
The values of Jj(zx) and the optimal policy are tabulated as shown in
Fig. 1.8.2. For this figure, all the calculations are done for the following
special case:

N=10, z=2, z=10, p =p =0.25.

These values are also used for parts (b) and (c). However, you are asked
to solve the problem for different values as noted earlier. Note that for the
problem to have an interesting solution, the problem data must be chosen
so that the problem’s policies are materially affected by the presence of the
upper and lower bounds on the price zx. As an example consider the case
where

N =10, x =20, z=40, p'=p =0.25.
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Expected Rewards (Exact Dynamic Programming)
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Figure 1.8.2 Table of values of optimal reward-to-go, obtained by exact DP, and
corresponding optimal policy [cf. the algorithm (1.96)-(1.99). Only the states zy,
that are reachable from z¢ at time k are considered (this is the state space for

time k).

Then the bounds 0 < z and xx < T never become “active,” and it can be
verified that the optimal expected reward is J*(z¢) = o, while all policies
are optimal and attain this optimal expected reward.

Suppose the investor adopts a heuristic, referred to as base heuristic, whereby
he/she sells the stock if its price is greater or equal to Szo, where 3 is some
number with § > 1. Write an exact DP algorithm to compute the expected
value of the sale under this heuristic.
Solution: The reward-to-go for the base heuristic starting from state x,
denoted J:k (zx), can be generated by the following (exact) DP algorithm.
(Note here the use of superscript zj in the quantities J,* (z,) computed
by the algorithm. The reason is that the computed values J,* (x») depend
on z, which incidentally implies that base heuristic is not sequentially
consistent, as defined later in Section 2.3.2 of this book.) The algorithm is
given by

I (zn) = 2, (1.100)

and forn=%,...,N —1,if 0 < x,, < Bxg, then
JnF(@n) = p  IK (@0 + 1)+ (1 =p" = p )Lk (20) + 07 Tk (20 — 1),

(1.101)
if z, = 0, then

Jnk (0) = p " Tk (1) + (1= p") k4 (0), (1.102)
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Expected Rewards (Exact DP Base Heuristic; f = 1.4)

12
11
x 10
9
8 Expected Reward
7 N =10
s =10
2 pt =p~ =0.25
3 3 3 3 3 3 3 3 3 3 X0 =2
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1 1.609 1.538 1.463 1.385 1.305 1.223 1.141 1.062 1.0
o 1.169 1.071 0.966 0.854 0.73 0.594 0.438 0.25
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Figure 1.8.3 Table of rewards-to-go for the base policy with 5 = 1.4, starting
from zg [cf. the algorithm (1.100)-(1.103) for k = 0].

and if z,, > Bk, then

Tk (x0) = Tn. (1.103)
The values of J:k (z1) computed by this algorithm are shown in Fig. 1.8.3,
together with the decisions applied by the base heuristic.

While the reward-to-go for the base heuristic starting from state xj is
very simple to compute for our problem, in order to apply the rollout
algorithm only the values J:jﬁfl(ack +1), J.® (zx), and J:ﬁ;l(xk —1) need
to be calculated for each state xx encountered during on-line operation.
Moreover, the base heuristic’s reward-to-go J]f k(zy) can also be computed
on-line by Monte Carlo simulation for the relevant states xy. This would
be the principal option in a more complicated problem where the exact DP
algorithm is too time-consuming.

Apply approximation in value space with one-step lookahead minimization
and with function approximation that is based on the heuristic of part (b).
In particular, use jN(:cN) =zn,and fork=1,...,N—1, use jk(mk) that
is equal to the expected value of the sale when starting at xj and using
the heuristic that sells the stock when its price exceeds Sxk. Use exact
DP as well as Monte Carlo simulation to compute/approximate on-line the
needed values J &(zr). Compare the expected values of sale price computed
with the optimal, heuristic, and approximation in value space methods.
Solution: The rollout policy ©# = {;107 R ﬂN71} is determined by the base
heuristic, where for every possible state xy, and stage k =0,..., N —1, the
rollout decision jix(x) is

ik (k) = sell at xx,
if
x5 +1 — x — jx.—1
p+JkJ’i1 (zr+1) + (1 —p+ -p )Jkil(xk) +p Jkil (s — 1) < zpy
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and

ik (k) = don’t sell at zy,

otherwise. The sell or don’t sell decision of the rollout algorithm is made
on-line according to the preceding criterion, at each state xx encountered
during on-line operation.

Figure 1.8.4 shows the rollout policy, which is computed by the preceding
equations using the rewards-to-go of the base heuristic J:k (zx), as given in
Fig. 1.8.3. Once the rollout policy is computed, the corresponding reward
function J k(zk) can be calculated similar to the case of the base heuris-
tic. Of course, during on-line operation, the rollout decision need only be
computed for the states xx encountered on-line.

The important observation when comparing Figs. 1.8.3 and 1.8.4 is that
the rewards-to-go of the rollout policy are greater or equal to the ones
for the base heuristic. In particular, starting from zo, the rollout policy
attains reward 2.269, and the base heuristic attains reward 2.268. The
optimal policy attains reward 2.4. The rollout policy reward is slightly
closer to the optimal than the base heuristic reward.

The rollout reward-to-go values shown in Fig. 1.8.4 are “exact,” and
correslpond to the favorable case Whlere the heuristic rewards needed at xy,
J,icjil+ (zr+1), Jp* (xx), and J % (xx — 1), are computed exactly by DP
or by infinite-sample Monte Carlo simulation.

When finite-sample Monte Carlo simulation is used to approximate the
needed base heuristic rewards at state zx, i.e., J,fffl(xk—b- 1), Jzil(xk), and

J,ffi;l (zx—1), the performance of the rollout algorithm will be degraded. In
particular, by using a computer program to implement rollout with Monte
Carlo simulation, it can be shown that when J:ﬁfl(xk +1), Jpk, (zx), and

J : fﬁ;l (z, — 1) are approximated using a 20-sample Monte-Carlo simulation
per reward value, the rollout algorithm achieves reward 2.264 starting from
xo. This reward is evaluated by (almost exact) 400-sample Monte Carlo
simulation of the rollout algorithm.

When J,fﬂrl(mk + 1), Jpk, (zx), and J:f;l(:ck — 1) were approximated
using a 200-sample Monte-Carlo simulation per reward value, the rollout al-
gorithm achieves reward 2.273 [as evaluated by (almost exact) 400-sample
Monte Carlo simulation of the rollout algorithm]. Thus with 20-sample
simulation, the rollout algorithm performs worse than the base heuristic
starting from x¢. With the more accurate 200-sample simulation, the roll-
out algorithm performs better than the base heuristic starting from xo, and
performs nearly as well as the optimal policy (but still somewhat worse than
in the case where exact values of the needed base heuristic rewards are used
(based on an “infinite” number Monte Carlo samples).

It is worth noting here that the heuristic is not a legitimate policy because
at any state x, is makes a decision that depends on the state x; where it
started. Thus the heuristic’s decision at x, depends not just on z,, but
also on the starting state x. However, the rollout algorithm is always an
approximation in value space scheme with approximation reward J & (zk)
defined by the heuristic, and it provides a legitimate policy.
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Expected Rewards (Rollout w/ Exact DP Base Heuristic; f = 1.4)
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Figure 1.8.4 Table of values of reward-to-go and decisions applied by the rollout
policy that corresponds to the base heuristic with 8 = 1.4.

(d) Repeat part (c) but with two-step instead of one-step lookahead minimiza-
tion.
Answer: The implementation is very similar to the one-step lookahead
case. The main difference is that at state xy, the rollout algorithm needs

to calculate the base heuristic reward values J:ﬁ;z (zr+2), JZJ’i;l(xk +1),

Tk s (), J:ﬁ;l(xk —1), and J,i’i;z(ack —2). Thus the on-line Monte Carlo
simulation work is accordingly increased. Generally the simulation work
per stage of the rollout algorithm is proportional to 2¢ 4+ 1, when /¢-stage
lookahead minimization is used, since the number of leafs at the end of the

lookahead tree is 2¢ + 1.

1.5 (Computational Exercise - Linear Quadratic Problem)

In a more realistic version of the cruise control system of Example 1.3.1, the
system has the form
Th4+1 = aTk + bug + we,

where the coefficient a satisfies 0 < a < 1, and the disturbance wy has zero mean
and variance o2. The cost function has the form

N—1
(zv —Zn) + Z ((xr — Zr)” + TU%))7
k=0
where Zo,...,Tny are given nonpositive target values (a velocity profile) that

serve to adjust the vehicle’s velocity, in order to maintain a safe distance from
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the vehicle ahead, etc. In a practical setting, the velocity profile is recalculated
by using on-line radar measurements.

Design an experiment to compare the performance of a fixed linear policy 7,
derived for a fixed nominal velocity profile, and the performance of the algorithm
that uses on-line replanning, whereby the optimal policy 7* is recalculated each
time the velocity profile changes. Compare with the performance of the rollout
policy 7 that uses 7 as the base policy and on-line replanning.

1.6 (Computational Exercise - Parking Problem)

In reference to Example 1.6.4, a driver aims to park at an inexpensive space on
the way to his destination. There are L parking spaces available and a garage at
the end. The driver can move in either direction. For example if he is in space
¢ he can either move to ¢ — 1 with a cost ¢t —¢ , or to ¢ + 1 with a cost ¢ + ¢, or
he can park at a cost c(¢) (if the parking space i is free). The only exception is
when he arrives at the garage (indicated by index N) and he has to park there
at a cost C'. Moreover, after the driver visits a parking space he remembers its
free/taken status and has an option to return to any parking space he has already
visited. However, the driver must park within a given number of stages N, so
that the problem has a finite horizon. The initial probability of space i being
free is given, and the driver can only observe the free/taken status of a parking
only after he/she visits the space. Moreover, the free/taken status of a parking
visited so far does not change over time.

Write a program to calculate the optimal solution using exact dynamic
programming over a state space that is as small as possible. Try to experiment
with different problem data, and try to visualize the optimal cost/policy with
suitable graphical plots. Comment on run-time as you increase the number of
parking spots L.

1.7 (Newton’s Method for Solving the Riccati Equation)

The classical form of Newton’s method applied to a scalar equation of the form
H(K) = 0 takes the form

Kip1 = Ki — <%) H(K), (1.104)

where % is the derivative of H, evaluated at the current iterate Kj. This

exercise shows algebraically (rather than graphically), within the context of linear
quadratic problems, that in approximation in value space with quadratic cost
approximation, the cost function of the corresponding one-step lookahead policy
is the result of a Newton step for solving the Riccati equation. To this end, we
will apply Newton’s method to the solution of the Riccati Eq. (1.42), which we
write in the form H(K) = 0, where

(1.105)
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(a) Show that the operation that generates K starting from K is a Newton
iteration of the form (1.104). In other words, show that for all K that lead
to a stable one-step lookahead policy, we have

-1
o (PH(K)
Kr =K — ( K > H(K), (1.106)
where we denote by
_ q+rL?
Kr = T (e bL)2 (@t 002 (1.107)

the quadratic cost coefficient of the one-step lookahead linear policy u(z) =
Lx corresponding to the cost function approximation J(z) = Ka?:

abK
L=-—pp (1.108)

Proof: Our approach for showing the Newton step formula (1.106) is to
express each term in this formula in terms of L, and then show that the
formula holds as an identity for all L. To this end, we first note from Eq.
(1.108) that K can be expressed in terms of L as

rL

Furthermore, by using Egs. (1.108) and (1.109), H(K) as given in Eq.
(1.105) can be expressed in terms of L as follows:

rL arL
H(K)——m-‘rT—q. (1.110)

Moreover, by differentiating the function H of Eq. (1.105), we obtain after
a straightforward calculation

0H(K) 1 a’r? _
0K (r+b2K)2

1— (a+bL)%, (1.111)

where the second equation follows from Eq. (1.108). Having expressed all
the terms in the Newton step formula (1.106) in terms of L through Egs.
(1.107), (1.109), (1.110), and (1.111), we can write this formula in terms of

L only as
q+rL? _ rL B 1 _ rL +ﬂ_
1-(@+0L)2  bla+bl) 1—(atbL)2 \ bla+oh) b 1)
or equivalently as
rL(1— (a+bL)?
g+rL? = — ( ( )) rL —ﬂ-i-q.

ba+bL) T blatbl) b
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A straightforward calculation now shows that this equation holds as an
identity for all L.

(b) What happens when K lies outside the region of stability?
(¢) Show that in the case of ¢-step lookahead, the analog of the quadratic

convergence rate estimate has the form

K — K*| < c|FH(K) - K*|°

)

Where~Fefl(l~() is the result of the (¢ — 1)-fold application of the mapping
F to K. Thus a stronger bound for |K; — K™| is obtained.

1.8 (Region of Stability and the Role of Multistep Lookahead)

In Section 1.5, we discussed the concept of the region of stability in the context
of linear quadratic problems. The concept extends to far more general infinite
horizon problems (see e.g., the book [Ber22a], Section 3.3). The idea is to call a
stationary policy p unstable if J,(z) = oo for some states x, and call it stable
otherwise. For ¢ > 1, the {-step region of stability is the set of J for which the
corresponding ¢-step lookahead policy is stable.

Generally, the ¢-step region of stability expands as ¢ increases. Note also
that in finite-state discounted problems all policies are stable, so all J belong to
the region of stability. However, for SSP this is not so: there are policies, called
improper, that do not terminate with positive probability for some initial states
(see the books [Ber12] and [Ber22b] for extensive discussions). Such policies can
be unstable. In the following example the region of instability includes functions
that are very close to J*, even with large ¢. This example involves small stage
costs, a class of problems that pose challenges for approximation in value space;
see Section 2.6.

Consider a shortest path problem with a single state 1, plus the termination
state t. At state 1 we can either stay at that state at cost € > 0 or move to the
state t at cost 1. Thus the optimal policy at state 1 is to move to ¢, the optimal
cost J*(1) = 1, and is the unique solution of Bellman’s equation

J*(1) =min {1, e+ J* (1) }.
(In SSP the optimal cost at ¢ is 0 by assumption, and Bellman’s equation involves
only the costs of the states other than ¢.)

(a) Show that the one-step region of stability is the set of all J(1) > 1 — .
What happens in the case where J(1) = 1 — ¢? Show also that the (-step
region of stability is the set of all J(1) > 1 — fe. Note: The (-step region
of stability becomes arbitrarily large for sufficiently large ¢. However, the
boundary of the ¢-step region of stability is arbitrarily close to J*(1) for
sufficiently small e.

(b) What happens in the case where there are additional states i = 2,...,n,
and for each of these states i there is the option of staying at ¢ at cost € or
moving to i — 1 at cost 07 Partial answer: The one-step region of stability
consists of all J = (j(n)7 . 7j(l)) such that e + J(i) > J(i — 1) for all
i>2and e+ J(1) > 1.
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